STUDY AREA 2 - DIETARY EXPOSURE TO ACRYLAMIDE IN FOOD ## NEW/UPDATE since February 2005 | Entry
No. | STUDY TITLE | SOURCE
(Member State/
Organisation) | STATUS C (completed) O (ongoing) P (proposed) | COMPLETION
DATE
(anticipated
date if not yet
completed) | SUMMARY OF AIMS OF STUDY
Max 50 words | SUMMARY OF MAIN
CONCLUSIONS
Max 50 words | COMMENTS | REFERENCES/
INTERNET LINKS | CONTACTS | |--------------|--|---|---|---|---|---|---|---|---| | 2.1 | Level of
acrylamide in
different foodstuffs
on the Belgian
market (see also
study area 1) | Belgium /
FPS health and
FASFC | С | July 2004 | To find out how much acrylamide is present in different foodstuffs on the Belgian market Second round of samples. Analysis with LC-MS/MS | The study contains a more precise intake estimate : 31,3% from fries, 21,9% from biscuits; | Observed levels see study area 1. | National Food
Authority web site | yasmine.govaert@iph.fg
ov.be, 0032/2 642 50 54;
Christine
Vinckx@health.fgov.be;
emmanuelle.moons@afs
ca.be | | 2.2 | of dietary | Belgium /
Ghent University,
Department of Public
Health | С | | To estimate the level of exposure of Belgian adolescents to acrylamide in foods and the risk for cancer and neurotoxicity | The estimated dietary intake of acrylamide per person given as the 5 th , 50 th and 95 th percentile were 0.19, 0.51 and 1.09 μg/kg bw/d. Bread, despite its low acrylamide content, is relevant as a source of acrylamide exposure at the lower percentiles. At higher percentiles the contribution of French fries and crisps is more important. It must be emphasised that the exposure assessment has several limitations. Risk of neurotoxicity seems negligible. | Contamination data is based on Belgian data | Paper accepted for publication in Food and Chemical Toxicology | Christophe Matthys or
Maaike Bilau,
christophe.matthys@uge
nt.be;
maaike.bilau@ugent.be
fax:+32 (0)9 240 49 94
tel: +32 (0)9 240 24 23
Department of Public
Health, UZ - 2 Blok A,
De Pintelaan 185, B-
9000 Ghent, Belgium | | 2.3 | Exposure sources and doses | Czech Republic /
National Institute
of Public Health in
Prague | 0 | May 2006 | To estimate the level of exposure of consumers to acrylamide in foods on the national level. Exposure doses will be calculated in May 2006. | Ongoing production of analytical data for exposure calculation | Study is involved in the national Total diet study. | Will be published in
the monograph of
the NIPH Prague
and as a scientific
paper | J.Ruprich,
jruprich@chpr.szu.cz,
tel/fax +420541211764,
Natl Inst Publ Hlth,
Palackeho 3a, 61242
Brno, CZ | EFSA-02-2005-area2 acryl EU activities Page 1 of 6 ### STUDY AREA 2 - DIETARY EXPOSURE TO ACRYLAMIDE IN FOOD ## NEW/UPDATE since February 2005 | Entry
No. | STUDY TITLE | SOURCE
(Member State/
Organisation) | STATUS C (completed) O (ongoing) P (proposed) | COMPLETION
DATE
(anticipated
date if not yet
completed) | SUMMARY OF AIMS OF STUDY
Max 50 words | SUMMARY OF MAIN
CONCLUSIONS
Max 50 words | COMMENTS | REFERENCES/
INTERNET LINKS | CONTACTS | |--------------|-----------------------------------|--|---|---|--|---|----------|--|--| | 2.4 | | Denmark /
Danish Veterinary
and Food
Administration | 0 | 2005 | To estimate the level of exposure of consumers to acrylamide in breakfast cereals and coffee for different age groups | The daily acrylamide intake from ranged from 0-9 µg for different age groups (highest for men aged 35-44). The daily acrylamide intake from breakfast cereals ranged from 0-2 µg for different age groups (highest for boys aged 4-14). | | not yet | Kit Granby kgr@fdir.dk | | 2.5 | formation and | Denmark /
Danish Veterinary
and Food
Administration | P | 2003 | To estimate the level of exposure of consumers to acrylamide in foods | | | | Mrs. Kit Granby, E-mail
kgr@fdir.dk Phone +45
33 95 64 74, Institute of
Food Safety and
Nutrition | | 2.6 | dietary intake of acrylamide from | Denmark /
Danish Veterinary
and Food
Administration | С | 2004 | To estimate the dietary acrylamide intake from coffee | The average dietary intake is 6.5 µg/day for adults and the 95 percentile 18 µg/day | | Granby K., Fagt S.
2004 Anal.
Chim.Acta, 520, 177-
182. | kgr@dfvf.dk | | 2.7 | | France /
French Food Safety
Agency (AFSSA) | С | July 2002 | To estimate the level of exposure of consumers to acrylamide in foods based on French diet and level of acrylamide as presented in SCF opinion (3 July 2002) | adults (> 15 years old): mean exposure = 0,5 µg/kg bw/d; higher consummers (percentile 95) = 1,1 µg/kg bw/d; infants (2-14 years old: mean exp = 1,4 µg/kg bw/d; higher consummers (percentile 95): 2,9 µg/kg bw/d | | www.afssa.fr | J.L. Volatier AFSSA-
DERNS 27-31 av. du
Général Leclerc BP 19
94701 Maisons-Alfort
cedex
jl.volatier@afssa.fr | | 2.8 | | France /
French Food Safety
Agency (AFSSA) | 0 | June 2003 | To estimate the level of exposure of consumers to acrylamide in foods based on French diet and level of acrylamide measured in national products | | | | | EFSA-02-2005-area2 acryl EU activities Page 2 of 6 ### STUDY AREA 2 - DIETARY EXPOSURE TO ACRYLAMIDE IN FOOD ## NEW/UPDATE since February 2005 | Entry
No. | STUDY TITLE | SOURCE
(Member State/
Organisation) | STATUS C (completed) O (ongoing) P (proposed) | COMPLETION DATE (anticipated date if not yet completed) | | SUMMARY OF MAIN
CONCLUSIONS
Max 50 words | COMMENTS | REFERENCES/
INTERNET LINKS | CONTACTS | |--------------|--|--|--|---|--|---|----------|--|---| | 2.9 | Acrylamide – Carry-over into cow milk and occurrence in mixed concentrates for dairy cows | Germany /
Federal Research
Centre for Nutrition
and Food (location
Kiel) and Federal
Institute for Risk
Assessment (BfR) | С | August 2004 | To generate data on acrylamide carry-over in cow milk (provocation study) | From the data a mean carry-over of 0.24 %, and a mean half-life time of 2.8 h could be estimated. This means acrylamide was rapidly transformed in the cow. | | www.bafm.de;
www.bfr.bund.de;
submitted to Food
Additives and
Contaminants | pabst@bafm.de;
h.klaffke@bfr.bund.de;
w.mathar@bfr.bund.de | | 2.10 | Acrylamide in food
of animal origin –
Carry over of
acrylamide in
laying hens (a pilot
study) | Germany /
Federal Institute of
Risk Assessment
(BfR) in cooperation
with Federal research
Center of Agriculture
(FAL) Braunschweig | 0 | May 2005 | To find out the carry over of acrylamide in food of animal origin | Low levels of acrylamide were
determined in liver, breast
muscles, abdominal fat and eggs | | | Dr. M. Lahrssen-
Wiederholt. M.Lahrssen-
wiederholt@bfr.bund.de | | 2.11 | Acrylamide in food
of animal origin -
Carry over of
acrylamide in
laying hens | Germany /
Federal Institute of
Risk Assessment
(BfR) | Р | December 2005 | Determination of acrylamide in spezified (single) organs and eggs | | | | Dr. M. Lahrssen-
Wiederholt. M.Lahrssen-
wiederholt@bfr.bund.de | | 2.12 | Estimates of national exposure to acrylamide in food | Ireland /
Food Safety Authority
of Ireland (FSAI) | 0 | July 2005 | To estimate the level of exposure of Irish consumers to acrylamide in foods (total diet study) | No conclusions yet available,
study is at the food
selection/analysis stage | None | www.fsai.ie | Christina Tlustos, FSAI
ctlustos@fsai.ie | EFSA-02-2005-area2 acryl EU activities Page 3 of 6 ### STUDY AREA 2 - DIETARY EXPOSURE TO ACRYLAMIDE IN FOOD ## NEW/UPDATE since February 2005 | Entry
No. | | (Member State/
Organisation) | STATUS C (completed) O (ongoing) P (proposed) | DATE | SUMMARY OF AIMS OF STUDY Max 50 words | SUMMARY OF MAIN
CONCLUSIONS
Max 50 words | COMMENTS | REFERENCES/
INTERNET LINKS | CONTACTS | |--------------|--|---|--|-----------|--|---|---|---|---| | 2.13 | exposure to
acrylamide in food,
coffee and cereal
based baby food | Norway /
The Norwegian Food
Safety Authority,
Norwegian Scientific
Committee for Food
Safety | С | June 2002 | To estimate the national exposure of consumers to acrylamide through the consumption of foods | Mean intakes of acrylamide calculated per kg bodyweight (micrograms/kg bw/day): males 0.36, males (16 - 30 years) 0.53, females 0.33. Potato crisps contributed mostly to the total mean intake (24.4% males, 32.6% males (16-30), 24.4% females). | Report from the
Scientific Committee of
the Norwegian Food
Control Authority | http://www.snt.no/nyt
t/tema/Akrylamid/ | Tor Øystein Fotland,
Norwegian Scientific
Committee for Food
Safety
tofo@fhi.no | | | | | С | | To estimate the exposure of consumers to acrylamide through consumption of coffee To estimate the exposure of children to acrylamide through consumption of barnemat. | Mean intakes of acrylamide from coffee calculated per kg bodyweight (micrograms/kg bw/day) 0.17 for both men and women. Mean intake calculated from the highest detected levels of acrylamide in cereal based baby foods. Mean intake (micrograms/kg bw/day) 6 month old boys 0.29, 6 month old girls 0.31; 1 year old boys 0.33, 1 year old girls 0.36. | | | | | 2.14 | | Sweden /
Swedish National
Food Administration | С | | To estimate the level of exposure of consumers in Sweden to acrylamide in foods | Mean intake 40 ug/person and day | | (2003) Dietary intake
of acrylamide in
Sweden, Food and
Chemical | Kettil Svensson, Toxicologist at the Division of Toxicology, National Food Administration, Box 622, SE-75126 UPPSALA, SWEDEN. Phone: +46 18 175751, Fax: +46 18 105646, e-mail: kesv@slv.se | EFSA-02-2005-area2 acryl EU activities Page 4 of 6 ### STUDY AREA 2 - DIETARY EXPOSURE TO ACRYLAMIDE IN FOOD ## NEW/UPDATE since February 2005 | Entry
No. | | Organisation) | C (completed) O (ongoing) P (proposed) | COMPLETION
DATE
(anticipated
date if not yet
completed) | SUMMARY OF AIMS OF STUDY Max 50 words | CONCLUSIONS
Max 50 words | COMMENTS | INTERNET LINKS | CONTACTS | |--------------|---|---|--|---|---|--|----------|--|--| | 2.15 | | Switzerland /
Official Food Control
Authority of the
Canton of Zurich | С | March 2004 | Model calculations to point out
main contributions of AA for
various consumers and potential
reduction | Substantial reduction primarily for roasted and fries potato products, then reaching a level which is difficult to further reduce | | , , , | Koni Grob, +41 43 244
71 31,
Konrad.Grob@klzh.ch | | 2.16 | Estimates of dietary exposure to acrylamide in The Netherlands. | The Netherlands /
Dutch Food Authority,
Inspectorate for
Health Protection | С | December
2002. | To estimate the level of exposure of consumers to acrylamide in foods | Mean exposure for a representative sample of the Dutch population is 0.5 µg/kg bw/day. | | (2003) 1569-1579 by
Konings EJM, Baars
AJ, van Klaveren JD,
Spanjer MC, Rensen
PM, Hiemstra M, van
Kooij JA, Peters | Dr. E. Konings. Dutch
Food Authority,
Inspectorate for Health
Protection, Den Bosch,
The Netherlands. E-mail:
Erik.Konings@kvw.nl,
Phone: +31402911500,
Fax: +31402911600 | | 2.17 | generation in bread and toast | United Kingdom /
RHM Technology for
the UK Federation of
Bakers | С | August 2003 | To understand the impact of different baking times and temperatures on acrylamide formation in bread and toast. | Acylamide levels in bread are comparatively low. Gentler baking and a falling oven temperature give lower levels (c.92 ppb) than more intense baking (c150 ppb). These baking profiles had no impact on toast levels. Acrylamide is concentrated in the crust. | | | John White - Director.
John.white@bakersfeder
ation.org.uk | EFSA-02-2005-area2 acryl EU activities Page 5 of 6 ### STUDY AREA 2 - DIETARY EXPOSURE TO ACRYLAMIDE IN FOOD ## NEW/UPDATE since February 2005 | Entry
No. | STUDY TITLE | (Member State/
Organisation) | STATUS C (completed) O (ongoing) P (proposed) | DATE | SUMMARY OF AIMS OF STUDY Max 50 words | SUMMARY OF MAIN
CONCLUSIONS
Max 50 words | COMMENTS | REFERENCES/
INTERNET LINKS | CONTACTS | |--------------|-------------------------------|---------------------------------|---|---------------|---|--|---|-------------------------------|---| | 2.18 | Acrylamide in
Cooking Fume | United Kingdom | С | November 2004 | OBJECTIVES: Determine if acrylamide vapour is released to air in cooking fume and if so: (i) Determine at what levels it is released in a typical small scale cooking operation. (ii) Establish the relationship between acrylamide levels in the food and that released to air. (iii) Investigate how cooking temperature affects the emitted acrylamide levels in cooking fume. | MAIN FINDINGS Acrylamide produced during cooking of food appears to be retained within the food; No evidence of the release of acrylamide in cooking fume during deep frying or oven cooking of chipped potatoes was detected even on overcooking; No evidence of the release of acrylamide in fume from heated crispbread was detected. | Acrylamide produced during cooking of food appears to be retained within the food or reacts | Report Number
OMS/2004/10 | Health and Safety
Laboratory, Harpur Hill,
Buxton SK 17 9JN
Telephone: 01298
218000 | | 2.19 | Exposure assessment | The HEATOX project | 0 | October 2006 | To generate validated data on acrylamide exposure and intra-
and inter-individual variation in exposure | | STREP under FP6
supported by EC,
DGResearch, Priority on
Food Quality and Safety | www.heatox.org | www.heatox.org | EFSA-02-2005-area2 acryl EU activities Page 6 of 6