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Many lines of insect-resistant genetically modified (IRGM) corn

and rice containing Bacillus thuringiensis (Bt) insecticidal genes

have been developed and undergone different environmental

biosafety assessments stages in China, showing robust

application prospects. The potential of targeted pests to

develop resistance to Bt crops is widespread, which threatens

the sustainable utility of IRGM corn and rice. In this study, the

potential risks of target pest complexes developing resistance

to IRGM corn and rice are evaluated. Theoretical and empirical

studies implementing precautionary insect resistance

management (IRM) strategies to delay resistance evolution are

summarized and challenges to IRM are discussed. Additionally,

solutions facing these challenges are proposed. Finally,

directions for future studies in developing IRGM corn and rice

and IRM plans are discussed.
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Introduction
Corn and rice are important crops in China. Their plant-

ing areas are 35.0 and 30.1 million hectares, respectively

[1]. Nonetheless, due to the increasing size of the Chinese

population, grain yields need to be augmented to meet

the increased demand. Insect pests are an important

constraint on crop production [2,3]. Traditionally, inten-

sive chemical control methods in China have been used to

control pests, but this approach has repeatedly led to the

evolution of pesticide resistance [4]. Insect-resistant gene

modified (IRGM) crops containing Bacillus thuringiensis
(Bt) insecticidal proteins have been introduced as an

alternative for controlling target pests [5]. In China, many

transgenic corn and rice lines have been transformed with
www.sciencedirect.com 
Bt genes, which are highly effective against rice and corn

pest complexes [6–8] and have shown robust prospects for

commercial applications. However, the potential risk of

targeted pests developing resistance is a key consider-

ation influencing IRGM corn and rice regulation and

sustainable use after widespread adoption. Therefore,

predicting the likelihood of resistance development

and implementing precautionary insect resistance man-

agement (IRM) strategies for the sustainable use of

IRGM corn and rice are critical. Robust IRM strategies

are expected to delay insect resistance evolution, prolong

IRGM crop life, and benefit the public [9]. During

practical use, IRM implementation depends on several

factors and faces many challenges. In this paper, we

review the development of IRGM corn and rice, explore

potential resistance risks of target pest complexes and

IRM strategies, discuss challenges to IRM, and propose

future research directions.

Development of IRGM corn and rice and
control efficacy against target pest
complexes
In the main corn-growing areas of China, Ostrinia furna-
calis, Helicoverpa armigera and Mythimna separata are the

major corn pests and usually cause over 10–20% yield loss

per year [6]. Four major lepidopteran pests, Chilo suppres-
salis, Scirpophaga incertulas, Sesamia inferens and Cnapha-
locrocis medinalis, are widely distributed in the main rice-

planting areas of China and cause serious damage to rice

resulting in economic losses of approximately US$

992 million annually [10]. More than six IRGM corn

and eight IRGM rice lines containing Bt insecticidal

genes have been developed in China to control these

pests [11–17,18��]. Among these IRGM corn lines, some

contain single Bt genes, such as cry1Ie in event IE09S034,

cry1Ah in G186 and codon-optimized cry1Ac in Bt-799,

which exhibit high efficacy for controlling O. furnacalis
and H. armigera under laboratory and field conditions [15–
17]. The combinations of cry1Ie and cry1Ah or cry1Ab and

cry2Aj genes in transgenic corn have been suggested to

confer full protection against these pests [12–14]. The use

of multiple Bt genes stacked with the epsps or the G10evo-

epsps genes in G6H or in Shuangkang 12-5 events pro-

vides not only higher insect-resistance to rice or corn pest

complexes but also higher herbicide-tolerance to glypho-

sate [14,19]. IRGM rice lines transformed with a single

insect-resistance gene (KMD, Huahui1, Bt-Shanyou 63,

T1C-19, and mfb-MH 86) show a broad spectrum of
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insect-resistance to rice pest complexes [7,20–23]. Com-

binations of cry1Ac and CpTI (cowpea trypsin inhibitor) or

cry1Ab and vip3H not only provide high resistance to rice

pests but also delay resistance evolution [19,24,25]. The

cry2A gene is also a candidate for use in stacked rice lines

combined with cry1A, cry1C or cry9C genes, although lines

transformed with cry2A exhibit only medium resistance to

rice pests [26].

Of the developed IRGM corn and rice lines, only Huahui

1 and Bt Shanyou 63 rice lines were approved for com-

mercial use in Hubei Province in 2009 (http://www.isaaa.

org/gmapprovaldatabase/commercialtrait/default.asp?

TraitTypeID=2&Trait=Insect%20Resistance). Other

transgenic lines have entered different phases of envi-

ronmental safety assessments, with robust prospects for

commercial use.

Resistance risk assessment and resistance
mechanism of target pests to IRGM corn and
rice
Though GM corn and rice are not commercially used in

China, the baseline susceptibilities of target pests to Bt

proteins produced by these crops have been surveyed.

The Cry1Ab LC50 values of 10 populations of O. furna-
calis from major corn-growing regions in China ranged

from 0.10 to 0.81 mg/g (Cry1Ab protein/diet), showing

only small variations in the susceptibility of O. furnacalis
to Cry1Ab across its range in China [27]. Surveys con-

ducted in 2002 and 2010 of over 10 distinct field popula-

tions across major rice-growing areas demonstrated

significant variations in the susceptibility of C. suppressalis
to both Cry1Ab and Cry1Ac [28�,29�,30��]. Similarly,

interpopulation variation in susceptibility to Cry1Ac

has been observed in the Fuzhou C. suppressalis popula-

tion [24]. Moreover, 10 different C. medinalis populations

exhibited a wide range of susceptibility, with the relative

susceptibility ratio between the most susceptible and

tolerant populations being 50-fold for Cry1Ac and 30-fold

for Cry1Ab [31]. These interpopulation differences in

susceptibility support the existence of the genetic diver-

sity necessary for evolution of resistance.

Furthermore, populations of S. inferens were observed to

display higher tolerance to Cry1A proteins compared with

C. suppressalis, inferring that S. inferens may have a high

potential to evolve resistance to Cry1A toxins [29�,30��].

Laboratory selection data also support the potential for

developing resistance in corn and rice pests. In the case

of O. furnacalis, laboratory selection of colonies for over

71 generations increased the LC50 values for Cry1Ab and

Cry1Ac by as much as 39.7-and 78.8-fold, respectively

[32,33�]. For rice stem borers, C. suppressalis developed

34-fold resistance to Cry1Ab and 28.3-fold resistance

to Cry1Ca after continuous selection for 58 and 19 gen-

erations, respectively (Han et al., unpublished). After
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21 generations of selection in C. suppressalis and 8 gen-

erations in S. inferens, the LC50 of Cry1Ac increased by

8.4-and 4.4-fold, respectively, and the estimated realized

heritability (h2) for Cry1Ac tolerance was 0.11 for C.
suppressalis and 0.292 for S. inferens [29�]. In Cry1Ab-

resistant O. furnacalis, there were high levels of cross-

resistance to Cry1Ac (36-fold) and Cry1Ah (131-fold),

and minor cross-resistance to Cry1Fa (6-fold). However,

no cross-resistance was observed between Cry1Ie and

Cry1Ab or Cry1Ac proteins [32,33�,34��]. In agreement

with this resistance phenotype, and alternative Cry1Ac-

selected strain of C. suppressalis exhibited cross-resis-

tance to Cry1Ab but no cross-resistance to Cry1Ca or

Cry2Aa (Han et al., unpublished). These patterns showed

that Cry1Ie (for control of O. furnacalis) and both Cry1Ca

and Cry2Aa (for control of rice stem borers) are ideal

candidate genes for the pyramided IRGM corn or rice

with cry1A gene [32,33�,34��].

The mechanisms of resistance and the mode of action of

Bt proteins in target pest complexes have been studied to

design IRM strategies. Resistance to Cry1A is associated

with the transcriptional down-regulation of a cadherin-

like protein gene in O. furnacalis [35], which has been

confirmed in subsequent transcriptome analyses compar-

ing Cry1Ab-resistant and susceptible O. furnacalis strains

[36��]. Several micro RNAs (miRNAs) targeting amino-

peptidase N and a cadherin-like protein, both potential Bt

receptor genes, showed significant differential expression

between susceptible and Cry1Ab-resistant O. furnacalis
strains [37��]. Data from proteomic analyses, heterologous

protein expression in insect cell cultures, ligand binding

and RNA inference [38–40] have suggested functional

roles for aminopeptidase N and cadherin-like protein in

the action of Cry1A in C. suppressalis and M.
separata. Additionally, the lower susceptibility of S. infe-
rens to Cry1A proteins relative to C. suppressalis was

confirmed to be associated with reduced Cry1A-binding

as a result of decreased binding site concentration [30��].
In conclusion, reduced binding of Cry proteins to mem-

brane target sites has been identified as a primary resis-

tance mechanism in these lepidopteran insects and thus

toxins that do not share binding sites, such as Cry1Ie or

Cry1Ca with Cry1A toxins, are optimal candidates for

gene pyramiding in IRM plans.

Insect resistance management (IRM) and
challenges to IRM
The high-dose plus refuge strategy is currently the most

widely used approach for Bt crop IRM [9]. The optimal

size and form of refuges and their distance to Bt fields

depend on population size, feeding habits and the dis-

persal abilities of pests. These factors are critical for the

successful implementation of IRM [41,42]. 120 For in-

stance, successful practical experience of IRM for Ostrinia
nubilalis in the USA showed that 20% non-Bt corn refuge

must be planted in the US Corn Belt, and 50% of these
www.sciencedirect.com
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refuges must be planted within 2 miles of cotton-growing

areas (�0.25 miles is preferred) to mitigate insect resis-

tance [43]. In addition, IRGM corn crops expressing high

doses of insecticidal protein are preferred for release. For

example, due to the differential susceptibility of corn pest

complexes, IRGM corn may not provide high dose against

tolerant Helicoverpa zea. Therefore, management options,

such as increasing refuge size, increasing the use of

alternative hosts, and limiting the total acreage, are crucial

for effective IRM in these cases [43]. The management

tactics used for O. nubilalis can be used as a reference for

IRM in O. furnacalis in China due to the similar biology of

the two species. However, the refuge strategy may be

difficult to implement in China because of challenges

associated with coordinating small farms. As discussed

above, no cross-resistance or sharing of receptors have

been observed between Cry1Ie and Cry1Ab or Cry1Ac

proteins in O. furnacalis, supporting their pyramided use

in IRGM corn. Natural refuges may be a good option for

IRM of M. separata since it is a migrant and polyphagous

pest of graminaceous crops such as sorghum and millet

[44].

Based on our current knowledge of rice stem borer

biology, maintaining a separate non-Bt field within

1 km of a Bt rice field would provide a suitable form of

refuge [45]. Considering a 500:1 ratio of susceptible-to-

resistant insects as a suitable mating proportion in the

field [46], our cage tests in Bt and non-Bt fields suggest

that the optimal percentages of refuge without pesticide

spray are 10% for IRM of C. suppressalis and 2% for C.
medinalis (Han et al., unpublished). Similar to the IRM for

corn pest complexes, IRGM rice may not provide a high

dose against S. inferens with low susceptibility to Bt

protein [29�,30��]. Therefore, suitable management

options for refuges are required to ensure the effective

implementation of IRM tactics [43]. Based on previous

studies, pyramiding of cry1A and cry1Ca or cry2Aa genes in

IRGM rice is an optimal strategy for increasing control of

S. inferens and reducing resistance evolution [30��]. More-

over, Manchurian wildrice (Zizania latifolia) and chufa

(Cyperus esculentus), which are non-rice host plants, could

also be used as a natural refuge for rice stem borer [47,48].

IRM strategies for IRGM corn or rice will inevitably face

many challenges because the successful implementation

of IRM depends on many factors. For instance, the high-

dose/refuge strategy is especially effective in delaying

resistance evolution when the initial resistance allele

frequency in the pest population is low. Therefore, the

initial resistance frequency in field populations of target

pests should be evaluated before IRGM corn or rice is

commercially used. Furthermore, as an added measure to

provide valuable and early warning information for the

government and farmers, effective resistance monitoring

programs should be performed, as soon as IRGM corn or

rice is commercially cultivated. An additional issue for
www.sciencedirect.com 
IRGM crops is the exposure of polyphagous pests to

multiple toxins in multiple crops. For instance, H. armi-
gera infests both corn and cotton. If IRGM corn with the

cry1A gene is used commercially, a key refuge for H.
armigera will be lost and resistance to commercially

planted Bt cotton (cry1Ac gene) may evolve more rapidly,

which severely challenges the development of IRGM

corn and corn pest management strategies [49]. Rice stem

borers can feed on Z. latifolia and chufa in addition to rice

[47], yet planting areas for these crops are small in China,

and alternative host plants as natural refuges are limited

in most rice-growing regions [48], which also influences

the efficiency of IRM. Notably, single-gene and pyra-

mided IRGM corn and rice lines have been simultaneous-

ly developed in China and have entered environmental

biosafety assessment, which may result in the concurrent

use of these IRGM lines in fields. Previous reports have

shown that the concurrent use of transgenic plants expres-

sing both one and two Bt genes will select for resistance to

two-gene plants more rapidly than the use of only plants

expressing two Bt proteins [50].

There are four major target pests of rice and three main

target pests of corn. These pests are biologically diverse,

have different peak outbreak periods and display differ-

ential susceptibilities to Bt proteins in IRGM lines.

These factors may further challenge Chinese IRM strat-

egies for IRGM rice and corn. To address these chal-

lenges, the following measures should be taken to

promote the sustainable use of IRGM corn and rice. First,

the regulation of IRGM corn and rice planting should be

strengthened and varieties lacking production of high

doses of insecticidal protein should not be released.

The timely development and application of pyramided

IRGM corn and rice and certification for their commercial

use should be approved by planned staging. Additionally,

the implementation of resistance monitoring programs

would provide early warning information for governments

and farmers. Further, researches on mechanisms and

genes involved in insect resistance are crucial to advance

monitoring programs. Finally, the development of edu-

cational programs related to agricultural biotechnology

that provide a basic understanding of IPM and IRM to

corn and rice farmers will contribute substantially to

achieving the sustainable use of IRGM crops.

Future directions and research needs
Other than rice stem borers, planthoppers are also major

rice pests in Chinese rice ecosystems; the damage caused

by planthoppers is equal or even higher than that caused

by rice stem borers [51]. Because the majority of first-

generation IRGM rice lines targeted stem borers, in-

creased attention should be given to identifying new

insecticidal genes with different modes of action to target

planthoppers [51]. Emphasis should also be placed on the

development of IRGM corn or rice lines with stacked

traits to ameliorate the constraints on corn and rice yields
Current Opinion in Insect Science 2016, 15:139–143
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in the field. In addition, the development of novel IRM

tactics and techniques for IRGM corn or rice with stacked

new straits is important for their sustainable use.
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