Contributions from industrial side streams to future protein sources

Peter Ruhdal Jensen

National Food Institute, Technical University of Denmark

DTU Food National Food Institute

Source: United Nations, Department of Economic and Social Affairs, Population Division (2017).
World Population Prospects: The 2017 Revision. New York: United Nations.

Future protein sources

Strong impact on:

- Land-use
- Food prices
- Meat production
- → Environment, climate

Americans eat 122 kg of meat a year Bangladeshis eat 1.8 kg of meat a year

Can we increase food productionen <u>and</u> lower CO₂ emission?

Side streams from breweries

Side-streams from brewing

Preben Hansen & Tim Hobley

Fractionation is key - food chain can be kept intact

20°C

75°C

65°C

DTU FOOD

DTU cantine

DTU FOOD – Folkemødet 2016

How big is the economic potential?

- 170 breweries in Denmark
- 600 million liters beer produced in <u>Denmark</u> i 2017
 - Amounts to 140 million kg BSG/year in <u>Denmark</u>
- Approx 4% protein in BSG:
 - 5.5 million kg protein "wasted" in Denmark
 - If we assume a price of 20DKK/kg protein: 112 mill DKK
- Protein is a small fraction of the BSG, trub, yeast

Conclusion - Breweries

- Enormous resources are either wasted, burnt or used for feed world wide
- A compact filter can dewater the BSG to improve shelf life, allowing fractionation and exploitation of these resources
- Fractions of BSG can be successfully used as food ingredients with important functional, nutritional and economic benefits

Side streams from dairies

Cheese production

Larger dairies become food ingredient companies

Whey is more valuable - cheese is the "by-product"

Slides modified from H.J. Andersen, Arla Food Ingredients

But whey disposal is still an issue, more so in some parts of the world and for many smaller dairies

- Lactose (4%) in whey is often wasted (little or no profit)
 - Animal feed or Fertilizer
 - Dumped into the rivers/sea
 - Or even pay €€€ to get rid of

- Cheap Feedstock for fermentation
- ⇒ Could reduce both pollution and CO₂ emission while generating value for the dairies

Some Lactic acid bacteria ferment lactose

Lactic acid bacteria as cell factories?

Lactococci as a platform for production of biochemicals from whey and other side-streams

Jianming Liu Christian Solem

Cell factories >80% yield of:

- R-acetoin
- S-acetoin
- Meso-2,3-butanediol
- R,R-2,3-butanediol
- S,S-2,3-butanediol
- Diacetyl
- Pyruvate
- Ethanol

New products in focus

- Vitamins, fatty acids,
- Jetfuel precursors
- Bioactive compounds

From dairy waste to ethanol

A spin-out from DTU Food

cling. Competitive pathways have been inactivated (indicated with red mark), G3P glyceraldehyde 3-phosphate, PDC pyruvate decarboxylase from Zymomonas mobilis, ADHB ethanol dehydrogenase from Z. mobilis, AA amino acids, CSLH corn steep liquor hydrolysate

Conclusion - Dairies

- Larger dairies such as ARLA has created enormous revenues from side streams
- In smaller dairies and in other parts of the world these resources are underutilised
- Valuable products can also be produced via fermentation of dairy side streams for the benefit of the environment

Plant based protein and biorefining

Plant based "meat" products are already in the shops

https://youtu.be/QB-90-LEPZ4

http://naturli-foods.dk/sortiment.aspx

Biorefining of green biomass for feed

Can we use green biomass as a source of protein for human consumption?

Daniel Nørgaard

Mikkel Stærmose

Fractionation and purification is the key

Amino acid profile of protein from green biomass is excellent

Aminosyrer	Anbefalet indtag	Soja protein	Rajgræs	Lucerne
	(% AA) ^a [4]	(% råprotein) ^b [16]	(% AA) ^c [17]	(% AA) ^d [18]
Alanin	-	3,9	7,8	6,3
Arginin	-	7,8	6,0	6,2
Asparagin	-	11,9	10,4	10,4
Cystein	0,6	1,2	1,4	1,3
Glutamin	-	20,5	12,3	11,2
Glycin	-	4,0	6,2	5,2
Histidin	1,5	2,5	2,2	2,4
Isoleucin	3,0	4,9	4,7	5,2
Leucin	5,9	7,7	9,4	8,9
Lysin	4,5	6,1	5,6	6,3
Methionin	1,6	1,1	2,2	2,0
Fenylalanin	3,8 ^t	5,4	5,7	5,8
Prolin	-	5,3	6,0	4,7
Serin	-	5,5	5,0	4,4
Threonin	2,3	3,7	5,2	5,0
Tryptofan	0,6	1,4	-	1,7
Tyrosin	-	3,7	3,4	4,6
Valin	3,9	4,8	6,5	6,4

Test case: 5%/10% grass protein in energy bars

Grass taste: Significant difference

Grass smell: No difference

General perception: No difference

Conclusion – protein from green biomass

- Potential use as food ingredients could contribute to future protein sources
- More research is requires to make the process economically viable and to obtain approval for use in food production

Microbial production of protein via fermentation?

Microbial production of food-grade proteins

Technically feasible?

- Proteins for food ingredients
- High-quality proteins functional, nutritional
- Drop-in protein
- Synthetic food
- Waste/side streams as feed stock

 α -lactalbumin (a high-value whey protein)

Consumer acceptance?

Examples of current microbial food production:

- Chymosine, transglutaminase
- Cheese, yogurt,
- Sausages, fish
- Sauerkraut, Kimchi, etc
- Beer, wine
- Bread

Ecomically feasible?

Mike Vestergaard

Joshua Chan

OPEN Can microbes compete with cows for sustainable protein production -A feasibility study on high quality protein

Received: 02 June 2016 Accepted: 12 October 2016 Published: 08 November 2016

Mike Vestergaard, Siu Hung Joshua Chan & Peter Ruhdal Jensen

Up to 50 times value added

Figure 2. Simulation of economic yield. The plot depictures α-La fermentations at maximized productivity with yield per substrate, substrate compositions and economic return based on the substrate price on the X, Y and Z axis respectively. The global maximum represents a fermentation, which converts the initial substrate into α-La worth 52 times the value of the starting material. The fermentation is simulated to take 300 hours and require the substrate to compose of 100% sugar.

Cell factories, biorefining and industrial side-streams can help us limit greenhouse gas emissions and feed the growing population

Researchers, politicians, industries and consumers – all of us play important roles in paving the way for future sustainable food production

