

VECTORS OR RESERVOIRS OF PATHOGENS OF AHL-LISTED AQUATIC DISEASES

Standing Committee on Plants, Animals, Food and Feed (PAFF) - Section: "Animal health and animal welfare

19-20 October 2023

Sofie Dhollander

WORKING GROUP ON AQUATIC DISEASES

- Isabelle Arzul
- Shetty Dharmaveer
- Niels Jørgen Olesen
- Morten Schiøtt
- Hilde Sindre
- David Stone
- Niccoló Vendramin

TERMS OF REFERENCE

- 1. For each of the aquatic diseases listed in Annex II to the AHL, assess which species or groups of species of aquatic animals pose a considerable risk for their spread, based on the fact that:
- they are **vector species or reservoirs** for that disease, or
- scientific evidence indicates that such role is likely.
- 2. Assess the suitability of the conditions under which they should be regarded as vectors or reservoirs for the purposes of movements.
- These conditions are set out in Annex I to Commission Delegated Regulation (EU) 2020/990 and in Annex XXX to Commission Delegated Regulation (EU) 2020/692
- Alternative conditions should be proposed, if the conditions, which are set out in those Regulations, are assessed to be unsuitable.

TOR1: LITERATURE REVIEW: REVIEW QUESTIONS

Review questions:

1. For vector species: What is the evidence generated by experimental infection studies, demonstrating transmission of 'Pathogen A' from 'vector species X' on or in which Pathogen A was detected, to a species 'Y'?

2. For reservoir species: What is the evidence generated by experimental infection studies or field studies, demonstrating the detection of Pathogen A on or in species X, without further evidence of transmission of pathogen A to a species 'Y'?

EXTENSIVE LITERATURE REVIEW PROCESS

TITLE AND ABSTRACT SCREENING-EXPERIMENTAL INFECTIONS

Fish	Molluscs	Crustaceans
Infection with HPR-deleted infectious salmon anaemia virus	Infection with Mikrocytos mackini	Infection with white spot syndrome virus
Koi herpes virus disease	Infection with <i>Bonamia exitiosa</i>	Infection with Taura syndrome virus
Epizootic haematopoietic necrosis	Infection with Marteilia refringens	Infection with yellow head virus
Infectious haematopoietic necrosis	Infection with <i>Perkinsus marinus</i>	
Viral haemorrhagic septicaemia	Infection with <i>Bonamia ostreae</i>	

Team Fish	Team Molluscs	Team Crustaceans
RUSINA Alessia	Engelsma, Marc (procurement)	KOHNLE Lisa
AIRES Mariana	Ana Roque (procurement)	LINDGREN KERO Linnea (Interim)
Christos Palaiokostas (ISA)	Dolores Furones (procurement)	Meroc Estelle (ISA)
Dhollander Sofie	Debora Cheslett (procurement)	RUSINA Alessia
Karagianni Anna Eleonora		Selam Alemu
Ilaria Carmosino (ISA)		Elea Baily
Marzia gnocchi		

TITLE AND ABSTRACT: EXAMPLE ELIGIBILITY SCREENING

Is the abstract written in an **EU language**?

Is this a **primary research** study?

Species X belonging to either **fish**, **crustaceans or molluscs**?

Does the paper report a study that included one or more **pathogens listed** in Table 1 of the Review Protocol?

Does this study investigate at least one Species X, which is **NOT a known susceptible species**?

REVIEW PROCESS – COLLECTION OF EVIDENCE

(n = 80)

Experimental studies (n = 48)

Field studies (n = 32)

▼ agecatX ▼ e

provided

provided

provided

provided

provided

provided 9999

Not provid 46

Not provid 10

Not provid 58

Not provid 83

Not provid 2

Not provid 10

Not provid 91

Not provid 39

Not provid 15

provided 35

provided 11

provided 11

provided 35

▼ ryX ▼ waterX

and eastern

and eastern

and eastern

and the St.

and the St.

U.S.A. and Snake River specified PCR

Production pond brain, intes PCR

CA

▼ matrixX ▼ labTestX

ey,liver,sp CellCult

ey,liver,sp ImmHis

ey,liver,sp CellCult

ev,liver,sp PCR

ey,liver,sp PCR

▼ Inf

Yes

Yes

Yes

Yes

Yes

Yes

Yes

ASSESSMENT OF EVIDENCE

STEP 1: INDIVIDUAL ASSESSMENT

- How certain are you that species X is a RESERVOIR species based on the evidence generated through the ELR?
 - *Yes* : > 90% certainty
 - No: < 10 % certainty
- How certain are you that species X is a VECTOR species based on the evidence generated through the ELR?
 - *Yes* : > 90% certainty
 - No: < 10 % certainty

Any positive test result that is not one of the above situations was considered inconclusive.

The inconclusive results were elaborated in group discussion> **STEP 2**

STEP 2: GROUP DISCUSSION

- Smaller expert working groups for fish, crustaceans, or mollusc diseases
- individual judgements were discussed to reach a consensus judgement
- Experts were asked to choose from the following ranges of certainty for the inconclusive cases:

Likely	66-90%
As likely as not	33-66%
Unlikely	10-33%

- Reasoning for each choice are given.
- 66-90% was set as the cut-off level to consider the target species vector or reservoir

CONCLUSIONS FISH-EXAMPLE: KHV

Koi herpes virus disease

Vector

• The following species are considered vector species for KHV with >90% certainty: Carassius auratus (Goldfish), Carassius auratus gibelio (Prussian carp), Ctenopharyngodon idella (Grass carp), Gymnocephalus cernua (Eurasian ruffe), Hypophthalmichthys molitrix (Silver carp), Rutilus rutilus (Common roach) and Tinca tinca (Tench).

Reservoir

• The following species are considered reservoir species for KHV with >90% certainty: *Acipenser gueldenstaedtii* (Russian sturgeon), *Acipenser oxyrinchus* (Atlantic sturgeon), *Acipenser ruthenus x Huso huso* (Hybrid sterlet x beluga), *Barbatula barbatula* (Stone loach), *Gasterosteus aculeatus* (Threespine stickleback), *Perca fluviatilis* (European perch) and *Scardinius erythrophthalmus* (Pearl roach).

Disclaimer: The assessment was exclusively based on peer reviewed evidence and should be updated when new evidence becomes available. >same for all pathogens assessed

CONCLUSIONS CRUSTACEANS-EXAMPLE: WSSV

White Spot Syndrome virus

Vectors

• The genus *Nitocra* (a genus of copepods) and the species *Octolasmis neptuni* (Pedunculate barnacle) are considered to be vectors for infection with WSSV with more than 90% certainty.

Reservoirs

- Apocyclops royi (a species of copepods) and Ergisalus manicatus (Gill louse) are considered to be reservoirs of white spot syndrome virus, with a certainty between 90-100%.
- Artemia (Brine shrimp), Schmackeria dubia (a species of copepods) and Squilla mantis (Spottail mantis shrimp) are considered to be reservoirs of white spot syndrome virus, with a certainty between 66-90%.

CONCLUSIONS MOLLUSCS: BONAMIA EXITIOSA AND BONAMIA OSTREAE

Bonamia exitiosa

Vectors

O No evidence was found to identify any vectors for *Bonamia exitiosa*.

Reservoirs

Ostrea stentina (Dwarf oyster) is considered to be a reservoir species for *Bonamia exitiosa* with more than 90% certainty.

Vectors

• No evidence was found to identify any vectors for *Bonamia ostreae*.

Reservoirs

Ostrea angasi (Angasi oyster) is considered to be a reservoir species for Bonamia ostreae with 66-90% certainty.

TOR 2: OBJECTIVE AND METHODOLOGY

Objectives

 Review the conditions under which fish/crustacean/mollusc species shall be regarded as vectors or reservoirs of diseases listed in Annex II to the AHL for the purposes of movements

Methodology

- Narrative literature review to collect any evidence from scientific literature identifying conditions that may prevent transmission by vectors
- Duration of the experimental studies and the water temperature were compiled during the ELS
- The experts concluded by consensus if the collected evidence was sufficient to support the need to alter the conditions Annex I to Commission Delegated Regulation (EU) 2020/990 and in Annex XXX to Commission Delegated Regulation (EU) 2020/692

CONCLUSIONS – EXAMPLE: FISH

Viral haemorrhagic septicaemia, Infectious haematopoietic necrosis or HPR-deleted infectious salmon anaemia virus

- O Under transport conditions at temperatures **below 25°C**, it is likely (66-90% certainty) that VHSV, IHNV and HPRΔ ISAV will remain infective.
- O Vector or reservoir species can transmit VHSV, IHNV or HPRΔ ISAV when transported at a **temperature below 25°C** into a non-affected area. Exposure in an VHSV, IHNV or HPRΔ ISAV affected area may have occurred if the vector or reservoir originate from:
 - a) an aquaculture establishment where susceptible species or reservoir or other vector species of are kept;
 - b) the wild, where they may have been exposed to susceptible, reservoir or other vector species;
 - c) an aquaculture establishment supplied with water possibly contaminated with VHSV, IHNV or HPRΔ ISAV.

Epizootic haematopoietic necrosis and Koi herpes virus

The conclusion was the same, however they are likely to remain infective under all transport temperatures.

SCIENTIFIC OPINIONS AND SCIENTIFIC REPORTS WERE PUBLISHED

- <u>Species which may act as vectors or reservoirs of diseases covered by the Animal Health Law: Listed pathogens of crustaceans - 2023 EFSA Journal Wiley Online Library</u>
- <u>Species which may act as vectors or reservoirs of diseases covered by the Animal Health Law: Listed pathogens of fish - 2023 EFSA Journal Wiley Online Library</u>
- Species which may act as vectors or reservoirs of diseases covered by the Animal Health Law: Listed pathogens of molluscs - 2023 EFSA Journal Wiley Online Library
- Extensive literature review on vectors and reservoirs of AHL-listed pathogens of crustaceans - 2023 EFSA Supporting Publications - Wiley Online Library
- <u>Extensive literature review on vectors and reservoirs of AHL-listed pathogens of fish - 2023 EFSA</u>
 <u>Supporting Publications Wiley Online Library</u>
- <u>Extensive literature review on vectors and reservoirs of AHL-listed pathogens of molluscs Engelsma -</u>
 2023 EFSA Supporting Publications Wiley Online Library

STAY CONNECTED

SUBSCRIBE TO

efsa.europa.eu/en/news/newsletters efsa.europa.eu/en/rss Careers.efsa.europa.eu – job alerts

FOLLOW US ON TWITTER

@efsa_eu
@plants_efsa

@methods_efsa @animals_efsa

FOLLOW US ON INSTAGRAM

@one_healthenv_eu

LISTEN TO OUR PODCAST

Science on the Menu –Spotify, Apple Podcast and YouTube

FOLLOW US ON LINKEDIN

Linkedin.com/company/efsa

CONTACT US

efsa.europe.eu/en/contact/askefsa

