

# Virus characterisation results from the PPR outbreaks of Greece and Romania

Report from the EU Reference Laboratory for peste des petits ruminants (EURL-PPR)



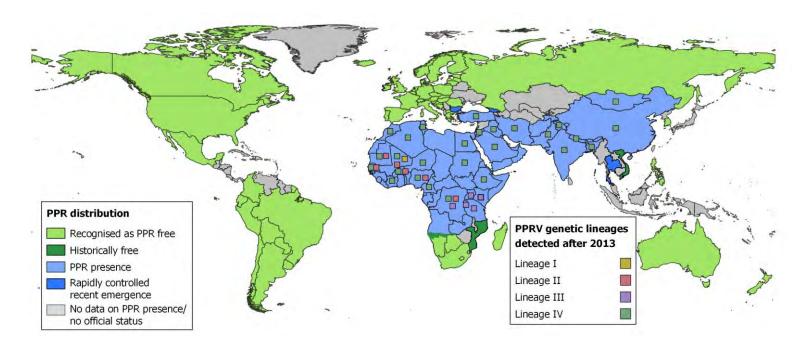
### **EURL-PPR** activities

- To ensure availability and use of high quality methods and high quality performance by NRLs
   Including distribution of Standard Operating Procedures and reference material
- To provide scientific and technical assistance to NRLs
- To provide scientific and technical assistance to the European Commission and other organisations
   Including active assistance in the diagnosis of PPR outbreaks

#### **EU Reference laboratory for Peste des Petits Ruminants**






contact-eurl-ppr@cirad.fr

https://eurl-ppr.cirad.fr/



## Key information regarding PPR virus

- Morbillivirus with small RNA genome (16kb) coding for 8 proteins
- Four genetic lineages, with lineage IV most widely distributed across Africa, Middle East, Asia
- One serotype (vaccine protects against all strains)





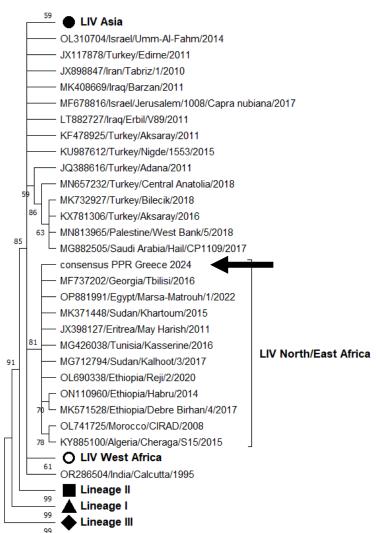
#### Samples received from NRL of Greece and Romania

Greece (reception on 23/07):

- 4 serum, 6 swabs, 4 blood samples from 4 animals from ADIS 1
- 2 tissue samples from 1 animal from ADIS 1 (Kalambaka)
- 2 tissue samples from 2 animals from ADIS 5 (Elasonna)

Romania (reception on 29/07)

- 10 serum from 10 animals from ADIS 1 (Baia)
- 12 tissue samples from 10 animals from ADIS 1
- 4 swab samples from 2 animals from ADIS 1
- 2 blood samples from 2 animals from ADIS 4


ELISA assay on serum samples and real-time quantitative PCR on all other samples

Positive results obtained for all samples, confirming results obtained by NRLs (reports sent to NRLs and EC)



#### Partial genome sequence

- Conventional RT-PCR targeting portion of nucleoprotein (255bp) followed by Sanger sequencing
- Identical sequence obtained from all samples of Greece and Romania
- 99.6% similar to strain Georgia/2016 and Sudan/Khartoum/2015
- Phylogenetic analyses place sequence with lineage IV, subclade grouping strains from North and East Africa

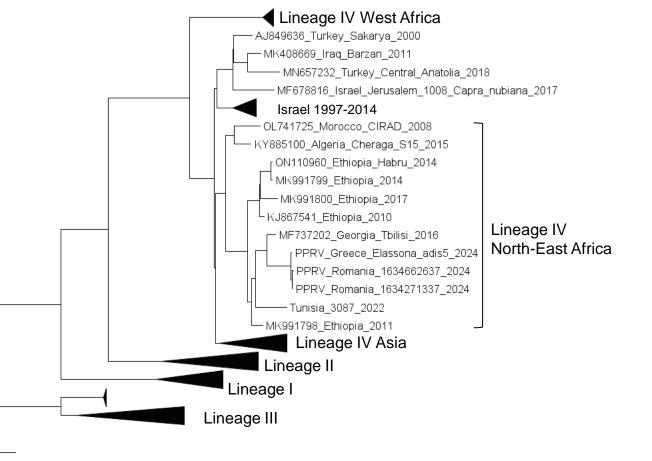




#### Full genome sequencing

- Focusing on 3 samples from each countries (higher quantity of RNA)
- High-throughput sequencing using Illumina platform
- Complete genome sequence for 1 sample from Greece (ADIS 5) and 3 samples from Romania
- Best results with organs

| CIRADID | Client ID     | Outbreak       | Matrice     | RT-Q PCR<br>results (Ct<br>value) | Mean depth<br>(nb reads) | Genome<br>coverage<br>(%) |
|---------|---------------|----------------|-------------|-----------------------------------|--------------------------|---------------------------|
| 80608   | 73A/24 No3    | Greece ADIS 1  | ocular swab | 23,06                             | 0.39                     | 21                        |
| 80611   | 101A/24 No6   | Greece ADIS 5  | lung        | 22,04                             | 3                        | 72.9                      |
| 80612   | 101A/24 No7   | Greece ADIS 5  | lung        | 14,88                             | 834                      | 99.5                      |
| 80632   | 7-1634662637* | Romania ADIS 1 | lung        | 11,95                             | 659                      | 99.5                      |
| 80633   | 8-1634662637* | Romania ADIS 1 | lymph node  | 11,65                             | 750                      | 99.7                      |
| 80638   | 13-1634271337 | Romania ADIS 1 | lung        | 11,74                             | 21000                    | 99.5                      |


<sup>\*</sup>same animal



#### Phylogenomic analysis

0.02

- Genomes from Romania and Greece highly similar (99.5% identity)
- Most similar sequence published: Georgia/2016 (98.3% identity)
- Confirm grouping with Lineage IV sub-clade North-East Africa





#### Genome comparisons

• Differences, including some that may change protein functions, observed across the genome

|                                      | Nucleotide<br>differences | Amino acid<br>differences | AA differences unique<br>(not found in other published<br>sequences) |
|--------------------------------------|---------------------------|---------------------------|----------------------------------------------------------------------|
| Georgia/2016 vs<br>Greece/2024       | 176                       | 30                        | 12                                                                   |
| Georgia/2016 vs<br>Romania-7/2024    | 177                       | 35                        | 14                                                                   |
| Georgia/2016 vs<br>Romania-13/2024   | 173                       | 34                        | 14                                                                   |
| Greece/2024<br>vs Romania-7/2024     | 22                        | 4                         | 2                                                                    |
| Greece/2024<br>vs Romania-13/2024    | 20                        | 5                         | 2                                                                    |
| Romania-7/2024 vs<br>Romania-13/2024 | 8                         | 1                         | Ο                                                                    |



#### Conclusions

- The NRLs have performed excellent diagnostic work to confirm PCR infections. The EURL-PPR continue its support with advise on protocols and provision of reference material
- Genome data confirms that emergence of PPR in Greece and Romania has a common origin, and that the virus is related to strains circulating recently in North and East Africa and in Georgia in 2016
- Recent sequencing data from neighbouring regions infected by PPR (Georgia, Turkey...) are lacking to provide clear insights into the origin of the emergence
- Some mutations observed in the genome may affect the pathogenesis observed, e.g. strong virulence in sheep
- Mutations have started to accumulate during this emergence, suggesting that additional sequencing may provide further information for epidemiological investigation



#### Thanks to

The EURL-PPR team
Samia GUENDOUZ, Olivier KWIATEK, Clémence RINAUDO

The NRL-PPR in Greece Aikaterini KIRTZALIDOU Konstantia TASIOUDI

The NRL-PPR in Romania Corina ANCUCEANU Mona GHITA