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1. Introduction

Maize (Zea mays L.) is the most common source of 
fumonisins in human and animal diets. Maize seeds are 
often contaminated with fumonisins produced primarily by 
Fusarium verticillioides and Fusarium proliferatum. These 
fungi can infect the seeds, or the silks can be contaminated 
by airborne or waterborne conidia, systemic infections can 
be caused by contamination of the roots, or pest insects can 
injure the plants allowing fungal penetration (Munkvold 
and Desjardins, 1997). Other mycotoxins may be present 
alone or together with fumonisins, including aflatoxins, 
deoxynivalenol (DON), zearalenone (ZEA), and some 

recently-discovered Fusarium metabolites collectively 
known as emergent mycotoxins, such as moniliformin 
(MON), beauvericin, enniatins and fusaproliferin 
(Desjardins, 2006; Marín et al., 2013). Aflatoxins are mainly 
produced by Aspergillus flavus, which synthesises type B 
aflatoxins as well as cyclopiazonic acid (CPA) depending on 
the strain, and by Aspergillus parasiticus, which synthesises 
both type B and type G aflatoxins, but not CPA. DON 
and ZEA are mainly produced by Fusarium graminearum 
and Fusarium culmorum and they are often found as co-
contaminants. Among the emergent mycotoxins, MON is 
the most prevalent and can be produced by several Fusarium 
species, including Fusarium avenaceum, Fusarium 
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Abstract

In many developing countries, maize is both a staple food crop and a widely-used animal feed. However, adventitious 
colonisation or damage caused by insect pests allows fungi to penetrate the vegetative parts of the plant and the 
kernels, the latter resulting in mycotoxin contamination. Maize seeds contaminated with fumonisins and other 
mycotoxins pose a serious threat to both humans and livestock. However, numerous studies have reported a 
significant reduction in pest damage, disease symptoms and fumonisin levels in maize hybrids expressing the Bacillus 
thuringiensis (Bt) gene cry1Ab, particularly in areas where the European corn borer is prevalent. When other pests 
are also present, the cry1Ab gene alone offers insufficient protection, and combinations of insecticidal genes are 
required to reduce damage to plants caused by insects. The combination of Cry1Ab protein with other Cry proteins 
(such as Cry1F) or Vip proteins has reduced the incidence of pests and, indirectly, mycotoxin levels. Maize hybrids 
expressing multiple Bt genes, such as SmartStax®, are less susceptible to damage by insects, but mycotoxin levels 
are not routinely and consistently compared in these crops. Bt maize has a greater economic impact on Fusarium 
toxins than aflatoxins. The main factors that determine the effectiveness of Bt hybrids are the type of pest and the 
environmental conditions, but the different fungal infection pathways must also be considered. An alternative 
strategy to reduce mycotoxin levels in crops is the development of transgenic plants expressing genes that protect 
against fungal infection or reduce mycotoxin levels by in situ detoxification. In this review article, we summarise 
what is known about the relationship between the cultivation of Bt maize hybrids and contamination levels with 
different types of mycotoxins.
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tricinctum, F. proliferatum, Fusarium subglutinans and 
F. verticillioides (Marín et al., 2013).

The consumption of mycotoxin-contaminated kernels is 
associated with a range of diseases and disorders in humans 
and domestic animals, including cancer, immune system 
dysfunction and metabolic disorders (Marasas, 2001; Marín 
et al., 2013; Sobrova et al., 2010; Williams et al., 2004). 
Fumonisins and aflatoxins are carcinogens (aflatoxin B1 
(AFB1) is the most carcinogenic natural compound known), 
and this creates a strong impetus to restrict the exposure 
of human and animal populations as far as possible (IARC, 
1993, 2002, 2012). In 2001, several countries submitted 
information on the concentration of fumonisins in maize 
and maize-derived foods, and fumonisins were detected 
in more than 60% of all food products (JECFA, 2001). 
These data are supported by a European Union report on 
the exposure of the EU population to Fusarium toxins. 
Among samples of raw maize material, 67% were positive 
for fumonisin B1 (FB1) (total=801) and a 51% were positive 
for fumonisin B2 (FB2) (total=544) (SCOOP, 2003).

The European Commission has set maximum levels for 
mycotoxins in maize and maize products. When such 
products are intended for human consumption, these values 
are currently 200-1000 µg/kg for fumonisins, 750 µg/kg for 
DON, 100 µg/kg for ZEA, 3 µg/kg for ochratoxin A (OTA), 
5 µg/kg for AFB1, and 10 µg/kg for total aflatoxins. Recently, 
indicative levels of 100 µg/kg in maize were also established 
for the total content of the trichothecene mycotoxins T-2 
and HT-2 toxin (EC, 2006b, 2007, 2010, 2012, 2013a). In 
animal feed, only the level of AFB1 is currently regulated 
in the EU (maximum 0.005-0.02 mg/kg, depending on 
the type of feed). Other important mycotoxins in feed 
are limited by guidance values that vary with the species 
of livestock: 0.9-12 mg/kg for DON, 0.1-3.0 mg/kg for 
ZEA, 0.05-0.25 mg/kg for OTA and 5-60 mg/kg for 
FB1+FB2. Recently, indicative levels of 250-2000 µg/kg in 
cereal products for feed and compound feed have been 
specified for the total content of T-2 and HT-2 toxin, with 
the exception of feed for cats, for which the guidance value 
is 50 µg/kg (EC, 2002, 2003b, 2006a, 2013a,b).

In contrast, the United States Food and Drug Administration 
(FDA) has proposed a guideline for total fumonisin levels 
in food of 2-4 mg/kg (depending on the product), and total 
aflatoxin levels of 20 µg/kg in maize and maize products 
for human consumption. For animal feed, the levels 
vary from 5 to 100 mg/kg for fumonisins and from 20 to 
300 µg/kg for aflatoxins, depending on the animal species 
(FDA, 2000, 2001).

2. Transgenic maize and mycotoxins

Factors that affect mycotoxin occurrence

The presence of mycotoxins in maize results from the 
interaction of several factors, including temperature and 
humidity, nutrient availability, the presence of other fungi, 
stress, and physical damage caused by pest insects. Before 
harvest, important factors include the weather (temperature, 
humidity and rainfall), exposure to insect pests, fungi and 
other pathogens, planting dates, the maize genotype and 
cropping system. Fumonisin contamination in maize is 
directly associated with Fusarium pink ear rot (mainly 
produced by F. verticilliodes) and its incidence depends on 
both environmental conditions and pest damage. Kernel 
damage caused by insects exposes the kernels to fungal 
spores, although there are several additional infection 
pathways. Fungal growth and mycotoxin accumulation can 
also be stimulated post-harvest by poor storage conditions 
such as high humidity and the presence of other pests 
(Marín et al., 2004; Miller, 2001).

Fungal growth and mycotoxin production are affected by 
multiple ecophysiological factors. The main factors that 
control fumonisin production in grain are temperature 
and water activity (aw). F. verticillioides and F. proliferatum 
germinate at 5-37 °C when aw exceeds 0.88, although 
the growth range fluctuates in the range 7-37 °C when 
aw exceeds 0.90. The optimum conditions for fumonisin 
production by F. verticillioides are 30 °C at 0.97 aw and 
for F. proliferatum the corresponding values are 15 °C at 
0.97 aw. Physicochemical and nutritional factors such as 
pH and carbon/nitrogen ratio can also affect fumonisin 
production. The presence of other fungi, such as A. flavus 
and Aspergillus niger, can affect the growth of Fusarium 
species, which is most competitive at 15 °C and 0.98 aw. At 
high aw values, fumonisin production can be stimulated by 
A. niger and other species (Marín et al., 1999; Picot et al., 
2010; Sanchis et al., 2006).

Suppression of insect pests using Bt technology

Injuries caused by insects are common sites of fungal 
infection on maize ears and stalks. The fungi can be 
airborne or may be suspended in water droplets that 
splash the wound, but insects can also act as vectors. One 
of the most prevalent examples is the European corn borer 
(ECB) (Ostrinia nubilalis Hübner), a maize pest that not 
only injures plants and exposes them to infection, but 
also vectors fungal spores, particularly F. verticillioides 
and F. proliferatum. ECB therefore promotes Fusarium 
infection of maize kernels and stalks, and may reduce 
yields by increasing the incidence of stalk rot (Munkvold 
and Desjardins, 1997; Munkvold et al., 1997; Sobek and 
Munkvold, 1999). F. verticillioides is the most prevalent 
fungal pathogen of maize but fungicides are only partially 
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effective, with efficacy depending on the pathogen strain 
and the fungicide mechanism of action (Falcão et al., 2011). 
Therefore, pest insects are more appropriate targets than 
fungi for the development of strategies to reduce mycotoxin 
levels in maize.

In many parts of the world, the management of ECB now 
relies on transgenic hybrid maize lines expressing the 
cry1Ab gene from the Gram-positive soil bacterium Bacillus 
thuringiensis (Bt). This gene encodes a potent pro-toxin that 
is activated in the alkaline environment of the insect gut and 
is highly specific towards particular insect species. These 
insecticidal crystal proteins are also named δ-endotoxins 
or Cry proteins. B. thuringiensis has been used since 1938 
to produce an insecticidal spray, but Bt transgenic plants 
resistant to ECB larvae were first made available in the 
USA in 1996 and in the EU in 1998. Different strains of the 
bacterium express different cry genes producing different 
pro-toxins that can protect plants against many different 
pests, including the corn rootworm complex (Diabotrica 
virgifera) (EPA, 2011; Höfte and Whiteley, 1989; Koziel et al., 
1993; Schnepf et al., 1998). Therefore, alternative Bt genes 
(such as cry1F) have also been expressed in maize to protect 
against further lepidopteran pests (Abbas et al., 2013; Bowers 
et al., 2013; Koziel et al., 1993). Economically-important 
maize pests that can be partially controlled using Bt hybrids 
include the corn earworm (CEW; Helicoverpa zea), common 
stalk borer (Papiapema nebris), southwestern corn borer 
(SWCB; Diatraea grandiosella) and western bean cutworm 
(WBC; Striacosta albicosta), whereas this strategy has proven 
less efficient against the fall armyworm (FAW; Spodoptera 
frugiperda) and black cutworm (Agrotis ipsilon) (Bowers et 
al., 2013, 2014; Dowd, 2000; Munkvold and Hellmich, 1999; 
Williams et al., 2002, 2005, 2006). Table 1 lists the Bt events 
targeting lepidopteran pests and the corn rootworm complex 
that are currently commercially available in the USA.

Since its adoption in the USA, Bt maize has become the 
second most widely cultivated genetically modified (GM) 
crop worldwide, after herbicide-tolerant soybean. About 
30% of global maize production in 2014 (184 million ha) was 
represented by GM varieties (55.2 million ha) (James, 2014). 
However, the EU has a strict, complex and contradictory 
legislative framework for GM crops, with only the Mon810 
maize event currently authorised for cultivation (EC, 1998, 
2003a, 2008).

Fumonisin contamination in Bt and non-Bt maize

The ability of Bt genes to protect maize against ECB and 
other lepidopteran pests means that Bt maize tends to suffer 
a lower frequency of fungal infections and the infections that 
occur are often less severe or even symptomless. In the case 
of fumonisins, there is a large body of evidence to support 
the benefits of Bt maize, as shown by the comparison of 
fumonisin concentrations in Bt and non-Bt maize hybrids 
in different field locations (Supplementary Table S1).

Munkvold et al. (1999) published a fundamental study 
concerning the effect of Bt maize on disease management 
and concluded that transgenic hybrids expressing cry1Ab 
were less susceptible to ECB, suffered less from Fusarium 
ear rot and had lower fumonisin levels than their non-
transgenic counterparts. However, if other insect pests 
were present alone or concurrent with ECB then the levels 
of fumonisins remained high (Clements et al., 2003; Dowd, 
2000; Hammond et al., 2004; Papst et al., 2005).

Many studies of natural infestations confirm the significant 
reduction in fumonisin levels associated with Bt hybrids 
(Abbas et al., 2013; Ostry et al., 2010; Pazzi et al., 2006). 
These studies were carried out at different times in different 
countries, including Italy (Masoero et al., 1999; Pietri and 
Piva, 2000), France (Bakan et al., 2002; Folcher et al., 2010; 
Pinson et al., 2002), Spain (Bakan et al., 2002), Argentina 

Table 1. Current Bt maize varieties against lepidopteran pests and corn rootworm complex (EPA, 2011).

Pest Bt event Protein(s) expressed Target pests1 Registrant

Lepidopteran pests Bt11 Cry1Ab ECB Syngenta
Mon810 Cry1Ab ECB Monsanto
TC1507 Cry1F ECB, BCW, FAW, SWCB Dow/Mycogen

Pioneer/Dupont
Mon89034 Cry1A.105 + CryAb2 ECB, SWCB, CEW, FAW Monsanto
MIR162 Vip3Aa20 CEW, FAW, BCW, WBC Syngenta

Coleopteran pests DAS-59122-7 Cry34Ab1 + Cry35Ab1 WCRW, NCRW, MCRW Pioneer/Dupont
Mon88017 Cry3Bb1 WCRW, NCRW, MCRW Monsanto
MIR604 Cry3A CRW Syngenta

1 ECB = European corn borer; CEW = corn earworm; WBC = western bean cutworm; BCW = black cutworm; FAW = fall armyworm; SWBC = southwestern 
corn borer; CRW = corn rootworm; WCRW = western corn rootworm; NCRW = northern corn rootworm; MCRW = Mexican corn rootworm.

ht
tp

://
w

w
w

.w
ag

en
in

ge
na

ca
de

m
ic

.c
om

/d
oi

/p
df

/1
0.

39
20

/W
M

J2
01

5.
19

60
 -

 R
ef

er
en

ce
 S

pe
ci

al
is

t <
ar

sp
ur

ch
as

e@
in

fo
tr

ie
ve

.c
om

>
 -

 M
on

da
y,

 J
ul

y 
11

, 2
01

6 
1:

03
:1

6 
PM

 -
 I

P 
A

dd
re

ss
:2

4.
38

.7
3.

2 



J. Díaz-Gómez et al.

478 World Mycotoxin Journal 9 (3)

(Barros et al., 2009; De la Campa et al., 2005) and the USA 
(Abbas et al., 2006, 2007, 2013; Bruns and Abbas, 2006; 
Dowd, 2001).

Importantly, Bowers et al. (2013) confirmed that lower 
levels of fumonisins were present in Bt hybrids exposed 
to ECB, but found that a cry1Ab × vip3Aa hybrid was 
more resistant to ECB, CEW and WBC than the cry1Ab 
hybrid and the non-Bt hybrid in all of the years covered 
by the study. The vegetative insecticidal protein Vip3Aa 
can therefore be combined with other toxins, such as 
Cry1Ab to target additional lepidopteran pests. Unlike 
the cry genes, which are expressed during sporulation, vip 
genes are expressed during the B. thuringiensis vegetative 
growth phase and they do not share sequence homology 
with cry genes (Lee et al., 2003; Schnepf et al., 1998). The 
cry1Ab × vip3Aa hybrid also showed a lower level of pest 
damage, a lower incidence of Fusarium ear rot and lower 
levels of fumonisins when infested with ECB, whereas 
cry1F hybrids were better protected against WCB because 
cry1F specifically targets this pest (Bowers et al., 2014). 
A comparison of eight commercially available Bt hybrids 
expressing multiple genes found no significant differences in 
the content of fumonisins among the hybrids (Abbas et al., 
2013). Recent studies of SmartStax® maize, which produces 
Cry1F, Cry1A.105+Cry2Ab2, Cry34Ab1/Cry35Ab1 and 
Cry3Bb1 to protect against common lepidopteran pests 
and the corn rootworm complex, reported less pest damage 
compared with single Bt hybrids and non-Bt hybrids, but 
did not consider mycotoxin levels (Head et al., 2014; Rule 
et al., 2014).

Aflatoxin contamination in Bt and non-Bt maize

Whereas the link between Bt maize and lower fumonisin 
levels is clearly established, the data for aflatoxin 
contamination are more contentious (Ostry et al., 2015). 
Windham et al. (1999) showed a significant correlation 
between fungal and insect exposure, inoculation or 
infestation dates and aflatoxin contamination. They found 
that Bt hybrids suffered less damage from insects and 
had lower aflatoxin levels than the other hybrids studied 
(A. flavus resistant and A. flavus susceptible hybrids and 
a non-Bt isogenic hybrid) when manually infested with 
SWCB. More recent studies have focused on the inoculation 
technique, showing that inoculation with A. flavus by kernel 
wounding, which facilitates fungal penetration, results 
in high-level aflatoxin contamination regardless of the 
hybrids used. There were no differences among the hybrids 
when infected with fungi alone because lower aflatoxin 
levels in the Bt hybrids reflected the reduction in insect 
damage, which indirectly reduced fungal contamination. In 
contrast, a non-wounding inoculation technique combined 
with SWCB infestation resulted in significantly lower 
levels of aflatoxin in the Bt hybrids (Williams et al., 2002, 
2005; 2006). A testcross involving aflatoxin-resistant and 

aflatoxin-susceptible lines crossed with Bt and non-Bt 
maize revealed lower aflatoxin levels in the Bt testcrosses, 
but the difference for individual lines was significant in 
only two of 10 lines investigated. The low insect pressure 
during the experiment could explain these results, because 
the higher the insect pressure, the greater the differences 
between hybrids (Williams et al., 2010).

In a 3-year study, Wiatrak et al. (2005) observed significantly 
lower aflatoxin levels in Bt compared to non-Bt hybrids 
during the first year of the experiment, but there was no 
difference with a tropical non-Bt hybrid. In the second year, 
significantly lower levels of aflatoxins were detected in the 
Bt hybrids than the tropical non-Bt hybrid, but there were 
no differences compared to the non-Bt hybrids. In the final 
year, there were no differences in aflatoxin contamination 
among the hybrids. Another 3-year study reported lower 
levels of aflatoxins in Bt than non-Bt hybrids, but only 
in one of the years (Abbas et al., 2006; 2007; Bruns and 
Abbas, 2006). Nevertheless, a subsequent study showed that 
aflatoxin contamination was significantly reduced in the 
Bt hybrid compared to its non-Bt isoline (Abbas et al., 2008). 
The authors continued these field trials until 2009, reporting 
lower mycotoxin levels in Bt maize, but the difference was 
not significant, perhaps due to the continuous cultivation 
(Abbas et al., 2013).

In the USA, Odvody et al. (2000) observed less insect 
damage in Bt hybrids but aflatoxin levels were not 
consistent. In a subsequent study of different Bt hybrids, 
the lowest level of insect damage was observed in the 
Mon840 event (cry2Ab) correlating with significantly 
lower aflatoxin levels compared to non-Bt and cry1Ab 
hybrids in 2000, but only compared to the non-Bt hybrid 
in 2001 (Odvody and Chilcutt, 2002). Different cryAb 
events were also evaluated, revealing less insect damage 
in the Bt hybrids Mon810 and Bt11 compared to non-Bt 
hybrids, but aflatoxin levels were also inconsistent in this 
experiment (Odvody and Chilcutt, 2003). Similarly, Maupin 
et al. (2001) did not find significant differences in the levels 
of ear rot and aflatoxin accumulation when comparing 
Bt and non-Bt hybrids inoculated with A. flavus. Buntin 
et al. (2001) found no significant differences in aflatoxin 
levels between Bt and non-Bt maize, but the Bt hybrids 
suffered less severe FAW infestations. These data indicate 
that insect damage is strongly correlated with fumonisin 
levels but not aflatoxin levels, suggesting that other factors 
such as drought stress and individual hybrid vulnerability 
may play a more dominant role than insect damage in the 
determination of aflatoxin levels. The field experiments 
concerning aflatoxin levels in Bt and non-Bt hybrids are 
summarised in Supplementary Table S2.
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Contamination with other mycotoxins in Bt and non-Bt 
maize

The results obtained with other mycotoxins are also 
controversial. Significantly lower levels of DON were 
observed in Bt compared to non-Bt hybrids in some studies 
(Magg et al., 2002; Schaafsma et al., 2002; Selwet, 2011; 
Valenta et al., 2001), whereas in other cases the mycotoxin 
levels appeared to be location-dependent (Bakan et al., 
2002; Papst et al., 2005; Pinson et al., 2002) or there was 
no difference between Bt and non-Bt hybrids (Barros et al., 
2009). A few studies have even found evidence for slightly 
higher DON levels in Bt hybrids, although the location 
was an important confounding effect (Folcher et al., 2010; 
Bakan et al. 2002). Schaafsma et al. (2002) analysed 102 
commercial maize fields in Canada, reporting a reduction 
in DON levels in Bt hybrids depending on the severity 
of ECB infestation in each field. This was supported by 
a study carried out in Germany showing a reduction in 
DON levels in Bt compared to non-Bt hybrids (Valenta et 
al., 2001). In another study, also in Germany, Magg et al. 
(2002) found significantly lower concentrations of DON in 
Bt maize in one of the two years of the experiment. Pinson 
et al. (2002) described differences in DON and ZEA levels 
between plots in two different fields in south and central 
France. Lower levels were observed in two Bt hybrids, but 
two others contained significantly higher levels of both 
DON and ZEA compared to the corresponding non-Bt 
cultivars. Bakan et al. (2002) reported low ZEA levels in 
their study, but significantly higher concentrations were 
observed in a traditional cultivar in France. In all the studies, 
the Bt hybrids expressed cry1Ab (Supplementary Table S3).

Only one study has investigated the impact of Bt on MON 
levels, and the Bt hybrids showed significantly lower levels 
of MON than non-Bt hybrids (isogenic and commercial 
hybrids) when infested with ECB. MON levels were 
significantly higher following the manual infestation of 
unprotected plants (296 µg/kg) compared to those treated 
with insecticide (66.2 µg/kg). In the infested plots, the MON 
concentrations were 153.5, 336.7 and 266.1 µg/kg for the 
transgenic, isogenic and commercial hybrids, respectively. 
In contrast, in the protected plots, the MON concentrations 
were 49.1, 99.3 and 42.9 µg/kg for the transgenic, isogenic 
and commercial hybrids, respectively (Magg et al., 2003).

Economic impact of mycotoxin reduction in Bt maize

The main goal of Bt technology is to reduce pest damage 
and promote higher yields. However, indirect benefits, 
such as the reduction of fumonisin levels, also increase 
the percentage of maize grain that meets US and/or EU 
regulatory limits, which can have a significant economic 
impact and may also reduce the prevalence and severity of 
human and animal diseases (Bowers et al., 2013; Folcher et 

al., 2010; Hammond et al., 2004; Magg et al., 2002, 2003; 
Munkvold et al., 1997, 1999; Pinson et al., 2002).

Estimations for the cost of crop losses due to mycotoxin 
contamination in the USA range from US$ 500,000 to 
US$ 1.5 billion, reflecting variations in contamination 
levels, regulatory limits, price variations and production 
outputs (CAST, 2003). However, in the USA most losses 
are regulatory in nature (i.e. based on the rejection of grain 
based on quality) rather than actual harvest losses, and 
maize grains rejected for food and feed use may still be 
suitable for industrial processes, such as biofuel production. 
On the other hand, the economic benefit of Bt maize in the 
USA has been specifically valued at US$ 8.8 million in terms 
of preventing losses caused by fumonisins, and similarly 
US$ 8.1 million for DON and US$ 14 million for aflatoxins, 
even though the aflatoxin levels depend on the predominant 
pest species (Wu, 2006, 2007; 2014; Wu et al., 2004). These 
data based on studies carried out over a decade ago do 
not take into account the increased adoption of Bt maize, 
which has risen from 30% in 2005 to more than 80% in 2015 
(USDA-ERS, 2015). A recent study of the Thailand maize 
market estimated the economic losses due to aflatoxins. A 
loss of US$ ~6.9 million per annum was estimated assuming 
low levels of aflatoxin contamination (data from harvest and 
dried maize supplied by a pet company) but this increased 
to US$ ~100 million per annum assuming higher aflatoxin 
levels (data from retail markets). The rejection of aflatoxin-
contaminated maize by the livestock sector is the most 
influential factor contributing to economic losses. Thus, 
the selection of high-quality maize (by the pet company) 
reflects lower levels of aflatoxin contamination, and lower 
economic losses (Lubulwa et al., 2015). Bt technology can 
improve the quality of maize by reducing mycotoxin levels 
as an indirect consequence of preventing infestations with 
insect pests. This technology also reduces the need for 
chemical insecticides, resulting in lower levels of pesticide 
residues in food and water and less environmental impact 
(Brookes and Barfoot, 2013; Qaim, 2009).

Alternative strategies to reduce mycotoxin levels in maize

Although targeting pest insects can help to reduce 
opportunistic fungal infections of maize, other transgenic 
approaches have emerged more recently in which the fungus 
itself is the target. For example, Kant et al. (2012) reported 
a field study of transgenic maize expressing a modified 
rice Rp13 gene encoding ribosomal protein L3, a primary 
target of DON. They developed two transgenic maize 
lines expressing the Rp13 gene, one using the constitutive 
CaMV 35S promoter and the other using the silk-specific 
ZmGRP5 promoter. Both plants were less susceptible to F. 
graminearum than wild-type plants, and those containing 
the silk-specific promoter were the most tolerant, with 
the mildest symptoms under field conditions (DON 
levels were not evaluated). The difference in efficacy may 
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reflect the broader activity of the silk promoter in the seed 
pericarp tissue. Maize silks are the primary route used by 
F. graminearum to infect the kernels. Expression of the 
modified Rpl3 gene in silk tissue may therefore help to 
reduce Gibberella ear rot and hence DON levels.

Maize plants expressing the α-amylase inhibitor protein 
from Lablab purpurea (AILP) can also be used to reduce 
fungal infection. Fungal amylases liberate fermentable 
sugars from kernel starch which are essential for mycotoxin 
production. Kernel screening assays in AILP-transgenic 
maize plants revealed aflatoxin levels 56% lower than 
controls. AILP expression therefore appears to reduce both 
fungal growth on the kernels and aflatoxin accumulation 
(Chen et al., 2015).

Another promising approach to reduce mycotoxin 
contamination is enzymatic mycotoxin detoxification in situ, 
which converts the mycotoxins into less toxic compounds. 
The ZEA lactone ring is sensitive to hydrolysis by the 
fungus Clonostachys rosea, which synthesises an alkaline 
lactonohydrolase responsible for detoxification (Kimura et 
al., 2006; Takahashi-Ando et al., 2002). The corresponding 
gene (zhd101) was able to reduce ZEA levels in vitro 
and in field-grown plants compared to non-transgenic 
controls, even when infected with F. graminearum. The 
ability of transgenic seeds to degrade ZEA was evaluated by 
immersing the seeds in 50 µg/ml ZEA for 48 h. The kernel 
tissues were then analysed by HPLC, showing that wild-type 
seeds contained 24.6±1.7 µg ZEA/g, whereas the transgenic 
seeds contained only 1.6±0.4 µg ZEA/g. The detoxification 
of ZEA in Fusarium-infected transgenic kernels was 
evaluated after inoculation with F. graminearum. The wild-
type seeds contained 15.4±3.7 ng ZEA/g, whereas the level 
of ZEA in non-inoculated seeds and inoculated transgenic 
seeds was below the detection threshold (Igawa et al., 2007). 
Similarly, the yeasts Exophiala spinifera and Rhinocladiella 
atrovirens, and the Gram-negative bacterium ATCC 55552, 
can produce enzymes that metabolise fumonisins. Duvick et 
al. (2003) patented a fumonisin esterase produced by these 
yeasts which can hydrolyse the tricarballylate esters of FB1, 
and this is active in transgenic maize. The esterase gene 
reduced fumonisin levels in Fusarium-infected grain from 
1.522 mg/kg without the enzyme to 0.379 mg/kg in esterase 
positive plants. Aflatoxin detoxification in transgenic plants 
has yet to be reported (Duvick, 2001; Hartinger and Moll, 
2011; Jard et al., 2011).

3. Concluding remarks

Several transgenic strategies can be used to reduce 
mycotoxin contamination in food and feed but Bt maize 
hybrids are widely grown and several studies have confirmed 
the reduction in pest damage, disease symptoms and 
fumonisin levels, particularly when ECB is the predominant 
pest. This is because fumonisin levels are reduced in Bt 

hybrids if the Fusarium population is dominated by species 
whose colonisation of the plant is promoted by ECB damage 
(Miller, 2001).

Among the commercial Bt hybrids, Mon810 and Bt11 
(which express cry1Ab) were associated with a reduction 
in the occurrence of Fusarium ear rot and fumonisins due 
to the lower level of kernel damage caused by susceptible 
lepidopteran pests (Dowd, 2000, 2001; Magg et al., 
2001; Munkvold and Hellmich, 1999; Papst et al., 2005). 
Conversely, no difference has been reported between Bt 176 
hybrids (Bt event 176 was withdrawn in 2001) and non-Bt 
maize (Magg et al., 2002; Schaafsma et al., 2002), and it 
has even been proposed that resistance against ECB and 
Fusarium ear rot may be inherited independently (Magg 
et al., 2002; Miller, 2001).

The pest species and its abundance are key determinants of 
mycotoxin levels, particularly if the main pest is CEW which 
is unaffected by Cry1Ab (Clements et al., 2003; Dowd, 2000; 
Hammond et al., 2004). Lower levels of aflatoxins occur 
in Bt maize if the main pest is SWCB or CEW, but there is 
no difference between Bt and non-Bt maize if the pest is 
FAW (Buntin et al., 2001; Williams et al., 2002, 2005, 2006, 
2010). When other pests are present, hybrids expressing 
Cry1Ab are inefficient and must be combined with further 
Cry proteins (such as Cry1F) or Vip proteins to increase 
the level of protection (Bowers et al., 2013; 2014). Thus, if 
Bt events are not selected by taking into account prevalent 
insect pests and environmental conditions in each field, Bt 
technology will not be effective. Hence the importance of 
Bt hybrids expressing multiple genes, whose performance 
in the presence of different pests and climate conditions 
has yet to be studied in detail.

The impact of Bt maize on the accumulation of aflatoxins, 
DON and ZEA is inconclusive because the extent of 
contamination depends on many interrelated factors. The 
different fungal infection pathways must be considered to 
understand the effect of Bt hybrids. The most common 
route used by F. verticillioides to infect the kernel is through 
the silks or through wounds caused by insect pests, whereas 
F. graminearum primarily reaches the kernels via the 
silks (Munkvold, 2003; Munkvold and Desjardins, 1997). 
A. flavus can infect maize kernels through the silks too. This 
may explain why Bt maize hybrids that are resistant to insect 
pests have less Fusarium ear rot and lower fumonisin levels, 
whereas the relationship with DON, ZEA and aflatoxin 
levels is not so clear cut. Further studies are necessary 
to determine the interaction between Bt maize and the 
different fungal species that produce these toxins.

Mycotoxin contamination is frequently linked with drought, 
heat stress and insects. Drought favours the accumulation 
of fumonisins more than heat stress (Miller, 2001). A 2-year 
study was carried out by Traore et al. (2000) to characterise 
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the effect of drought stress on Bt maize. Water deficit during 
the vegetative period delayed leaf emergence, reduced the 
leaf area and caused stunted growth in both Bt and non-Bt 
hybrids. It also reduced grain and biomass yields and kernel 
number per ear during both years. However, the Bt hybrids 
had greater biomass in 1997 and greater grain yields in 
1998 because they were not so severely infected by second-
generation ECB. Therefore, Bt maize continues to play an 
important role in insect resistance under drought stress.

The first commercially available drought-tolerant GM 
maize variety (MON87460) expresses a bacterial cold shock 
protein B (CspB), a molecular chaperone derived from 
Bacillus subtilis, which may provide a yield advantage under 
limited water availability. A recent field study confirmed the 
higher grain yield of MON87460 under drought conditions 
compared to a conventional hybrid (Nemali et al., 2015). 
The combination of Bt and drought-tolerant maize should 
therefore achieve even higher yields and lower mycotoxin 
levels because it will be protected against two major 
environmental stress factors.

Studies that considered aflatoxins and fumonisins 
simultaneously reported variable results, suggesting that 
diverse environmental conditions may prevent the control 
of both mycotoxins in the same crops (Abbas et al., 2002, 
2006, 2007, 2008; Bruns and Abbas, 2006). More studies are 
needed to determine whether aflatoxin resistance traits can 
be crossed into Bt hybrids. Aflatoxin-resistant germplasm 
tends to possess undesirable agronomic traits such as tight 
husk coverage and late maturity. Breeding programs aiming 
to achieve the introgression of aflatoxin resistance into Bt 
hybrids could remove these undesirable characteristics 
while reducing aflatoxin contamination (Williams et al., 
2008, 2010). Bt maize has a greater economic impact on 
Fusarium mycotoxins than aflatoxins (Wu, 2006, 2007; 
Wu et al., 2004). Further studies are needed to evaluate the 
effect of both Bt hybrids expressing multiple genes and Bt 
hybrids combined with maize lines that are resistant to the 
accumulation of other mycotoxins, especially aflatoxins.

A potential risk that must be borne in mind comes in the 
form of mycotoxin derivatives (modified mycotoxins) that 
escape routine analytical techniques but may be digested 
by animals triggering toxic effects comparable to free 
mycotoxins. These derivatives should be included in the 
total mycotoxin allowances, and future legislation must 
consider their presence even though this would increase 
the stringency of testing and rejection, resulting in further 
economic loss. This highlights the benefits of Bt maize, 
which would reduce the levels of mycotoxins and potentially 
their derivatives, although the impact of Bt hybrids on 
the accumulation of modified mycotoxins needs to be 
addressed in more detail (De Boevre et al., 2012, 2014; 
De Saeger and Van Egmond, 2012; Wu, 2006). Finally, the 
development of transgenic plants expressing genes that 

protect against fungal infection (e.g. the modified Rp13 
gene and the AILP transgene) or reduce mycotoxin levels by 
in situ detoxification (e.g. zhd101 and fumonisin esterase) 
could provide an additional strategy to control mycotoxins 
(Chen et al., 2015; Duvick, 2001; Duvick et al., 2003; Igawa 
et al., 2007; Kant et al., 2012) and could be combined with 
Bt hybrids to provide additive or even synergistic protection 
against mycotoxin-producing fungal pathogens.
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levels in Bt and non-Bt hybrids.
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