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INTRODUCTION

The essence of probabilistic risk assessment is that it aims at ranges of plausible values,
rather than single values or point estimates, as is usual in current risk assessments. A
drawback of point estimates is, that they can be best estimates, or worst case values, or
anything in between, and such can only be made known in a narrative way. In doing so,
the level of conservatism of a worst case value remains vague. Further, a series of worst
case assumptions may be multiplied, and thereby result in an unnecessarily conservative
and possibly even unrealistic risk assessment.

In probabilistic risk assessment one tries to quantify uncertainties associated with any of
the steps involved in the risk assessment process, be it data or assumptions. These
uncertainties are then combined using statistical techniques, in order to quantify the
uncertainty in the end result of interest. A common technique for combining uncertainties
is the The Monte Carlo method. As a simple example, consider the assessment of
exposure to a compound in a food item by multiplying the concentration in the food by
the intake rate of the food. In a probabilistic approach we do not multiply the two single
numbers, but two distributions, reflecting the uncertainty in the concentration and the
intake rate, respectively. The Monte Carlo method randomly draws a large number of
pairs of values from the two distributions, multiplies the two values in each pair, and
pools the resulting list of products together in a histogram; this histogram gives the
required uncertainty distribution for the exposure to the compound.

For more complicated assessments, the Monte Carlo approach remains easy to understand
and implement. Making a probabilistic assessment meaningful is mostly a matter of a
proper conceptual understanding of the various uncertainties involved, and how they
relate to each other. It is important to distinguish between uncertainties that reflect
imperfect scientific knowledge from uncertainties that reflect variability in a population
(sometimes denoted as type I and type II uncertainties, respectively). The imprecision in
any point estimate as reflected by its standard error or confidence interval is an example
of type I uncertainty. The uncertainty that the human being could be more, or maybe less
sensitive than a factor of ten compared to the test animal, is another example. The
variation in sensitivity among individuals exemplifies type II uncertainty, but the question
how large this variation exactly is constitutes type I uncertainty.

It is not meaningful to combine these two types of uncertainty into a single uncertainty
distribution. It should always be clear how a derived uncertainty distribution must be
interpreted. For example, a 5™ percentile may reflect either a 5% probability of being
wrong (type I uncertainty), or a fraction of 5% of the population considered (type II
uncertainty). By maintaining the distinction between these two types of uncertainty in the
Monte Carlo analysis, one may end up with statements such as: There is a 95%
probability (level of confidence) that at most 10% of the population exceeds the
acceptable daily intake (ADI). Uncertainty distributions that result from mixing type I and
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type Il uncertainties are difficult to interpret, and can only be used as a sort of worste case
approach to see if there might be a potential problem.

A second crucial aspect obviously is the quantification of the magnitude of the
uncertainties involved. In the case of uncertainties of estimates resulting from
(experimental) data, common statistical techniques can be used. It is more difficult to
quantify uncertainties in assumptions that have to be made in situations of lacking data,
such as in extrapolating from no adverse effect levels observed in animals to humans. In
those situations one may base an estimate of the uncertainty associated with the
extrapolation factor on relevant data for other compounds, for which both human and
animal data are available, and consider the statistical characteristics of such data.

The approach of probabilistic risk assessment will be briefly discussed for assessing
health-based exposure limits such as reference dose (RfD), ADI, and tolerable daily
intake (TDI), as well as for assessing exposure levels in the population of interest.

HEALTH-BASED EXPOSURE LIMITS

In the default method, acceptable intake or exposure limits are obtained by dividing the
no observed adverse effect level (NOAEL) by a number of uncertainty factors (UF):

ADI,TDI,RfD = NOAEL (1)
T UF, x UF, x UF,.....

As opposed to the operational definition of the ADI by equation (1), the probabilistic
approach starts from the notion that we are interested in a certain unknown dose level that
we consider as sufficiently protective, e.g. the dose level that does not lead to adverse
effects in the majority of people. The aim is to estimate this unknown value from any
relevant information that we may have, and to assess the precision (uncertainty) of that
estimate, depending on the quality of the data available. To that end equation (1) is re-
formulated as:

NAEL — NAELanimal (2)

sens.human E

interspec intraspec

where the NAELns human denotes the true, but unknown dose level at the borderline of
adverse effects for a sensitive human being. Similarly, the NAEL,nima 1s defined as the
unknown dose level at the borderline of adverse effects for animals. The extrapolation
factors (EFs) in the numerator are simply the ratios of the relevant NAELs, i.e.

_ MAEL
interspec NAEL

NAEL
_ average human (3)
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Note that equation (2) can be expanded when necessary to allow for other areas of
uncertainty, for example with a factor EFgcnronic when only subchronic studies are
available.

In the probabilistic approach each of the entities at the right hand side of (2) is given by
an uncertainty distribution. The uncertainty in the NAELgeps. human can be evaluated using
the Monte Carlo approach, as illustrated in Fig. 1.

( cholinesterase activity (In-scale)

[}

control 15 1.0 05 0.0 05

group
dose (mg/kg, 10-log scale)

0.0 0.2 0.4 0.6 0.8 1.0
/ CED (mg/kg)

Sth percentile: Benchmark dose

Fig. 1. Upper panel: cholinesterase activity (umole/ml, In-scale) in erythrocytes as a function of
"log-dose (dots refer to individual animals), with fitted regression function, and the estimated
CED (value: 0.17 mg/kg) at a CES of 20% cholinesterase inhibition. Lower panel: the associated
uncertainty distribution (obtained from 500 Monte Carlo runs from the fitted regression model)
for the CED. The lower 5th percentile of this distribution (0.04 mg/kg) is comparable to the
benchmark dose.
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Uncertainty in NAEL,uimal

The usual way of deriving a dose level from the animal study that can be used as the
starting point for risk assessment is by (statistically) comparing each dose level with the
controls, resulting in the NOAEL. WOUT — I have put this change in to try to keep NAEL
separate in reader’s mind from NOAEL The NOAEL suffers from various drawbacks,
one of them being that it is not possible to assess the uncertainty in the NOAEL as an
estimator of the (true) NAEL,nima - This makes the NOAEL unsuitable for a probabilistic
risk assessment. The benchmark approach does allow for deriving a point estimate of the
NAEL,pimal, together with an uncertainty distribution. The general idea of the benchmark
approach is to estimate the dose associated with a particular, small effect, based on a
dose-response function that has been fitted to the data. When this small effect is regarded
as nonadverse, the associated dose can be regared as a(n estimate of the) NAELajimal.
Figure 1 illustrates this for a set of continuous dose-response data. In the case of
continuous data, the severity of an effect can best be quantified in terms of a percent
change relative to the level of the endpoint observed in the controls. In the example of
Figure 1, where the response is acetylcholinesterase activity, it is assumed that a 20%
inhibition is adverse, and the Critical Effect Size (CES) is postulated to be 20%. After
fitting a dose-response model to the data, the associated dose, the Critical Effect Dose
(CED), is derived from the fitted model. The latter is in fact a point estimate. The
complete uncertainty distribution for the CED may be derived by various statistical
techniques, for example by bootstrapping (Slob and Pieters 1998) or by maximum
likelihood based methods. Note that the benchmark dose as originally defined by Crump
(1984) is a lower percentile of the uncertainty distribution of the CED (i.e., a lower
confidence bound). Thus, the uncertainty distribution of the CED can be seen as simply
an extension of Crump's benchmark dose.

Probabilistic Extrapolation Factors

The denominator of expression (2) consists of a number of extrapolation factors that are
typically unknown for any particular chemical. What can be done, however, is try to find
indirect information, e.g. historical data on other chemicals, that may give an indication
of what are plausible values for each of these factors. This information can be
summarized in the form of a distribution for each EF. For example, one may imagine that
the ratio NAELverage human / NAEL animal (i.€. the interspecies EF) varies from chemical to
chemical. If for a number of chemicals this ratio could be estimated (using those
compounds for which human data are available) the resulting distribution of these ratios
represents the variation between chemicals. Examination of ratios of NOAELSs related to
two animal species (e.g. rat vs. mouse, dog vs. rat) shows that metabolic dose-scaling
(dose per BW"7) results in distributions with medians close to unity (see, e.g. Baird et al.
1996, Vermeire et al. 1999). This indicates that dose per BW"" is a better dose-scale to
correct for size differences between species than dose per BW. Given this assumption,
the distribution of the interspecies EF should have a species-specific median (given by the
allometric BW ratio for the specific test animal and the human being), and a spread that
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may be derived from the empirical distributions of NOAEL ratios between test animal
species.

Similarly, one may postulate a distribution for the EFiyraspecics. Here two approaches may
be followed. On the one hand, it may be assumed that variation in sensitivity in the
human population is more or less homogeneous, i.e. the magnitude of that variation does
not depend on the chemical. This variation might be estimated from the variation in
observed characteristics in the human population, such as absorption rates and metabolic
clearances (e.g. Hattis et al, 1999). On the other hand, one may focus on differences
between chemicals, i.e. for one chemical the difference between a sensitive and an
average individual is larger than for another chemical (e.g. Slob and Pieters, 1998). In the
first approach, the uncertainty is of type I, in the second of type I. The illustration in Fig.
2 uses the second approach, and results in a single overall (type I) uncertainty distribution
for the NAELgeps. human- Therefore, this distribution reflects scientific uncertainty in the
NAELgens human, Where the sensitive human is not specified. When the EFiuaspecies 15
embodied with a type II distribution, it should be evaluated separately from the type I
uncertainties that are associated with the other entities (e.g. NAELpima and the EF;nerspec )-
In this second interpretation the outcome of the risk assessment can, at least theoretically,
be associated with a particular (small) proportion of the population at risk (e.g. Evans et
al. 2001). The results of such an analysis could be a lower confidence limit (resulting
from the type I uncertainties) for a no-adverse-effect dose for a particular (low)
percentage of the population (resulting form the type II uncertainty in EFinraspec)-

In general it may be assumed that each EF (i.e. ratio of true NAELSs) is approximately
lognormally distributed. The plausibility of this assumption is confirmed by observed
(ratios of) NOAELSs, which are well described by lognormal distributions (e.g. Kramer et
al. 1996).

When chemical specific information is available, the EF distributions may be (partly)
based on that specific information. When no chemical specific information on any of the
EFs is available, default EF distributions have to be used. Default distributions for the
various EFs have been proposed by Vermeire et al (1999), after reviewing the relevant
literature.
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Fig. 2. lllustration of probabilistic assessment of the ADI, TDI, or RfD. The upper right corner
shows dose-response data for a continuous endpoint from an (animal) study, with the fitted
model (decreasing curve) used for deriving the CED distribution (numerator). The denominator
comprises the distributions for the extrapolations to be made. The resulting distribution (left
hand side of the equation) denotes the uncertainty in the CED for the sensitive human
subpopulation, a lower percentile of which may be taken as the ADI, TDI, or RfD.

Although most available dose-response data in the literature report NOAELSs, it should be
noted that NOAELs are critically dependent on study design and dose-selection. In
consequence the ratios of NOAELSs do not accurately reflect the ratios of NAELs and are
subject to large estimation errors, resulting in ratio distributions overestimating the
variation of the relevant EF. Unfortunately it is not possible to quantify the estimation
error of a NOAEL, and therefore correction cannot be made to obtain more realistic EF
distributions. A better way to estimate EF distributions would be to base them on the
ratios of CEDs, obtained by the benchmark approach. This is an important research need
that may improve general risk assessment methodology.
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Probabilistic assessment of ADI, TDI, RfD

The procedure for deriving a probabilistic ADI is illustrated in Fig. 2. In the upper
right corner the data are presented related to the (continuous) endpoint considered as
critical from the available studies on the particular compound. In this case the data points
relate to the observations in individual animals, the larger marks indicating the group
means. First a certain Critical Effect Size (CES) is determined, i.e., a certain percent
change relative to the level of the endpoint observed in the controls, assuming that this
particular percent change is non-adverse for the endpoint considered. Note that the CES is
not a measure of incidence, but of (acceptable) severity. Then the associated Critical
Effect Dose (CEDgpimar) is derived from the fitted dose-response model, together with its
uncertainty distribution. This distribution is then “divided” by the distributions for the
relevant EFs, usually inter- and intraspecies, and, if necessary, for other EFs, e.g. for
subchronic to chronic extrapolation. Finally, the resulting distribution for the NAELges,
human has to be analyzed to derive an ADI (or TDI, RfD), for example by selecting a low
percentile of the uncertainty distribution. An obvious choice for this lower percentile is
5%, since this is generally considered in science as an acceptable error in significance
testing (including significance testing in the classical approach aimed at deriving
NOAELSs). Thus, the interpretation of a probabilistically derived ADI (or TDI, RfD) is
that it is unlikely (with quantitative information on how unlikely) that the true NAEL in
the sensitive human is lower than the derived value.

In this illustration the final distribution is strictly interpreted as reflecting scientific
uncertainty concerning the NAEL in the sensitive human. The meaning of the term
“sensitive human” cannot be read from the final distribution: it is determined by the
interpretation of the EF;niaspec distribution.

Estimating risk at actual exposure levels

The probabilistic approach may also be used to estimate possible health effects at any
given exposure level in the human population, be it in the general population or in a
particular exposure group. The actual exposure level may be below or above the ADI (or
TDI, RfD), but in practice one will mostly be interested in situations where these
exposure limits are exceeded.

When exposure levels increase, the response rate (fraction of the population) and the
response size (magnitude of effects in individuals) are expected to increase
simultaneously. However, applications of the probabilistic approach thus far have
focussed on either of these two. Baird et al (1996) and Evans et al. (2001) base their
analyses on a fixed effect size considered as adverse, and aim to estimate the uncertainty
distribution of the dose where a specified fraction of the human population may suffer
from that effect. Slob and Pieters (1998) take the other approach, and aim to estimate the
size of the effect in the individuals of a (unspecified) sensitive subpopulation. The latter
approach is illustrated in Fig. 3. After scaling the actual human exposure level (possibly
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related to a specific exposure group) to the animal dose level (depending on the animal
species, see e.g. Vermeire et al. 1999, Baird et al. 1996), the size of the effect in the
animal is estimated from the dose-response data obtained from a relevant toxicological
study. The critical dose-response data being of a continuous nature (e.g. red blood cell
counts, organ weights, enzyme levels), the size of the effect is defined in terms of a
percent change in the level of the endpoint compared to the normal level in the controls.
The uncertainty associated with the estimated effect size, due to experimental error, is
quantified, resulting in a distribution for the expected effect size in the animal. Then this
distribution is combined with the distributions for the extrapolation factors relevant for
the particular assessment. The resulting distribution reflects the scientific uncertainty in
the estimate of the effect-size in the sensitive human at the actual exposure level. Thus, a
higher percentile of this distribution may be chosen to assess the upper bound of the size
of the effect in the (sensitive) human population. When this upper percentile of the effect
size is very small, or toxicologically insignificant, one may decide that human health risks
can be disregarded. Or one might report both the 5th and the 95th percentiles as a 90%-
confidence interval for the expected effect size in the sensitive human being. Again, in the
illustration of Fig. 2., the final distribution reflects scientific uncertainty only: the
interpretation of “sensitive human” depends on the interpretation of the EFijuaspec
distribution that was used in the analysis. An important assumption in this approach is
that the dose-response relationship for the (continuous) endpoint used in the analysis is
similar in animal and human, except for a dose factor that reflects the possible difference
in sensitivity between the species.

An example of a probabilistic risk assessment at actual exposure levels can be found in
Pieters et al. (2001), who estimated, for various endpoints, the possible effect sizes in the
sensitive human subpopulation resulting from the estimated current intake of
deoxynivalenol (DON) in cereal crops. For example, based on the 95" percentile of the
intake distribution in 20 year old women they estimated the additional risk of anomalous
sternebrae in embryos between 0.0 and 0.6% (90%-confidence interval). For body weight
reduction, the 90%-confidence interval for the estimated effect size in one-year old girls
was 0.2 — 24.6%, based on the 95" percentile of the intake distribution in this
subpopulation. Thus, it may be concluded that the risk of anomalous sternebrae is
minimal, since even the upper limit of the confidence interval is small. However, in one-
year old girls the reduction in body weight could both be very small (around 0.2%), or
quite substantial (around 25%), not allowing a positive or negative conclusive answer for
this endpoint.
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Fig. 3. lllustration of a probabilistic risk assessment aimed at the possible human health effects
given a particular exposure level. The upper right corner shows dose-response data for a
continuous endpoint from an (animal) study, together with the fitted model (decreasing curve)
used for estimating, at that dose, the magnitude of the effect in the animal with the associated
uncertainty distribution (top, middle). Combining this distribution with the EF distributions
results in a distribution of the expected effect size in the sensitive human subpopulation.

Note that in this example the observations in the animal study refer to a continuous endpoint,
and therefore the final distribution of the expected effect in the sensitive human is defined in
terms of a continuous effect size (e.g. percent change in red blood cell counts). The upper
percentile, indicated as ** Possible risk” can be seen as an upper confidence bound of the
expected effect size in the sensitive human subpopulation.

10
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PROBABILISTIC ASSESSMENT OF EXPOSURE

In exposure assessments data are often poor, resulting in type I uncertainties. Due to
variations in human behaviour type II uncertainties are unavoidable. Therefore,
probabilistic exposure assessments are generally faced with both types of uncertainties,
which need to be evaluated separately. To illustrate how this may be done, consider the
example from the introduction, where exposure to a compound from a food item was
estimated by multiplying the concentration in the food by the consumption rate of the
food:
intake = concentration X consumption.

Both concentrations and consumption rates usually vary, and this may be expressed by a
type II uncertainty distribution. Suppose now, that the data on concentrations in food are
limited, so that the type II distribution for the concentrations itself is uncertain (i.e. type I
uncertainty). For example, we may be quite sure that the distribution for the
concentrations is lognormal, but we may have doubts on the exact value of the geometric
mean (GM). This type I uncertainty may be expressed by yet another lognormal
distribution. By randomly drawing values from the latter GM distribution we are in fact
randomly drawing whole distributions for the concentrations. Then each distribution in
the sample of distributions for the concentrations is multiplied with the consumption
distribution, resulting in the sample of intake distributions.

This idea of hierarchical Monte Carlo analysis is further illustrated in Fig. 4. Here, not
only the GM but also the GSD (geometric standard deviation) is assumed to be uncertain
due to lack of data. First, a pair of values for the GM and the GSD is drawn from their
type I distributions. Since a lognormal distribution (describing the variation in the
concentrations) is completely determined by the GM together with the GSD, these two
values form a randomly drawn type II uncertainty distribution of the concentrations. Then,
this concentration distribution is multiplied with the consumption distribution, by a full
Monte Carlo analysis, resulting in a (type II) distribution for the product, i.e., the intake.
This whole process is repeated many (N) times, starting with two new random drawings
from the type I distributions for the GM and GSD underlying the concentration
distribution. The final result of this hierarchical Monte Carlo scheme is a whole bunch of
type II distributions for the intake, which can all be plotted as cumulative distributions in
one plot (see e.g. fig. 7.1 in Risk Assessment of Food Borne Bacterial Pathogens). Or,
one may calculate, say, the 95th percentile of each (type II) intake distribution, which
taken together compose a type I uncertainty distribution for that percentile. The latter
distribution can be used to derive a confidence interval for the 95" percentile of the intake
in the population. For example, suppose the 90%-confidence interval were (12, 25), then
the verbal conclusion from this analysis would be that 95% of the population should have
an intake lower then 25, a statement that is made with 90% confidence.

11
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Fig. 4. lllustration of a hierarchical sampling scheme evaluating type I and type Il uncertainties.
A set of N pairs of gms and gsds is randomly drawn from their (type 1) uncertainty distributions,
indicated by arrows #1. Each pair determines (arrows #2) a type Il distribution, expressing the
variation in concentrations. Each concentration distribution is combined with the type Il
distribution for consumption by a full Monte Carlo analysis, resulting (arrows #3) in N type 1l
distributions for the intake. Thus, the variation in the intake distributions reflect type [
uncertainty.

As already noted in the introduction, an appropriate conceptual analysis of the problem at
hand is crucial in an uncertainty analysis. A proper interpretation and use of any data
should be part of that. A particularly important example in relation to risk assessment and
the ADI (or TDI, RfD) is the use of food consumption survey data as a means to estimate
interindividual variation in long-term intake rates of food. Food surveys usually consist of
(consecutive) records of daily food consumption. The observed variation in daily
consumption is the “sum” of the long-term variation in consumption habits between
individuals, and the variation between (short-term) differences between days (within
individuals). Usually the aim is to compare the exposure in the population with a health-

12
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based exposure limit (RfD, ADI, TDI), which is typically based on chronic exposure.
Therefore, the long-term variation in consumption habits between individuals is of
interest. The observed variation in the raw data overestimates that variation, and needs to
be corrected for the daily fluctuations. Here, Monte Carlo analysis does not apply. What
can be done is an analysis based on a statistical model (Slob, 1993). This exemplifies the
phenomenon that observed variation in the available data may not match the variation that
is needed, due to the fact that other, not relevant sources of variation are incorporated in
the observed variation.

DISCUSSION

The strong point of the probabilistic approach is that it quantifies the uncertainty
associated with any particular assessment, in addition to the magnitude of the risk level:
the former is given by the width of the distribution, the latter by the location of it. In the
default uncertainty factor approach a low ADI (or TDI, RfD) may result from high
toxicity as well as from poor data (large uncertainty).

Being an extension of the default approach, the probabilistic approach solves a few of the
existing weaknesses, but importantly it does not introduce any new ones. For example,
one might argue that a weakness of the probabilistic approach is that the default
interspecies distribution to be used in the absence of chemical-specific information, is not
firmly based on data, and that the default distributions appear to some extent arbitrarily
chosen. However, it should be noted that this criticism similarly holds for the default
factor of ten that is usually applied in current practice.

An important advantage of the probabilistic approach is that it allows for the estimation
of possible health effects given the actual exposure in the population (Fig. 3). The
outcome of such an analysis may lead to the conclusion that health effects in the human
population are likely (so that measures are required) or unlikely (so that measures are not
required), but the outcome may also be inconclusive. Nonetheless, the latter situation is
informative and helpful in that the probabilistic approach can provide useful information
on the consequences of proposed risk management options that may either increase or
decrease exposure. One may compare the costs involved in reducing exposure with costs
of reducing the uncertainties in the risk assessment, taking the severity of the possible
effects in the human population into account. Thus, an important strength of the
probabilistic approach is that it enhances the decision making process.
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