SANCO/1166/2008

PROCEEDINGS OF THE JOINT TWELTH ANNUAL MEETINGS OF THE NATIONAL NEWCASTLE DISEASE AND AVIAN INFLUENZA LABORATORIES OF COUNTRIES OF THE EUROPEAN UNION

HELD AT: AVIAN VIROLOGY AND AGROCHEMICAL RESEARCH CENTRE, UCCLE, BRUSSELS, BELGIUM 16th to 18th October 2006

Edited by Dennis J. Alexander

Contents

CONTENTS

List of Participants	Page
·	•
Programmes	7
Annual meeting of the National Laboratories for avian influenza	10
Country reports on avian influenza for 2005	11
Avian Influenza in Russia: Current situation and control strategies	36
Preventive vaccination in France during winter/spring 2006	37
Respiratory shedding of H5N1 HPAI in wild ducks infected experimentally	38
Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice	39
Sublethal infection of poultry with H5N1 HPAI	41
HPAI H5N1 infection of a mute swan flock in the city of Toruń in Poland	42
Review of current status of vaccination of zoo birds against AI in the EU	43
Vaccination of Swedish zoo birds against avian influenza H5	44
HPAI in wild and domestic waterfowl in Hungary	45
Report on surveys for avian influenza in poultry and wild birds 2005	46
Spread of Asian-lineage H5N1 HPAI to Europe	47
Epidemiological analysis of Al Surveillance data and related IT issues	48
European influenza surveillance scheme (Eiss)	49
FLU-LAB-NET	50
Highly pathogenic H5N1 avian influenza in dead swans, Evros Delta, Greece	51

Contents

Introduction of an H6N5 influenza virus in turkeys	52
Recent H3N1 isolation from sentinel mallards	53
New developments for the pathotyping of avian influenza viruses	54
Antigenic characterisation of H5 viruses by cartography	55
Validation of an N1 antibody competitive ELISA	56
Evaluation of ELISA kits for avian influenza serological surveillance	58
Experiences with AI real time PCR since the H5N1 threat in Europe	59
Comparison of different methods for the detection of influenza A virus from tracheal and cloacal swabs of chickens infected experimentally	60
The first Pan-European AI PCR proficiency panel (Spring 2006)	61
Annual Meeting of the National Laboratories for Newcastle disease	62
Country reports on Newcastle disease and other APMV infections for 2005	63
Technical report for the Community Reference Laboratory for avian influenza, 2005	77
Technical report for the Community Reference Laboratory for Newcastle disease, 2005	86
Report from the European Commission	92
Development of a real-time RT-PCR for pathotyping Newcastle disease virus isolates using a novel probe	93
Phylogenetic analysis of Newcastle disease viruses isolated in Western Africa in early 2006	94
Inter-laboratory comparative tests using haemagglutination inhibition for 2006	97
Community Reference Laboratories for Avian Influenza and Newcastle Disease - Work programmes 2006 and 2007	98
List of names and addresses for national reference laboratories in Member States, certain third countries and participants	105

Participants

PARTICIPANTS

ESTONIA:

EU NATIONAL LABORA	TORIES:
--------------------	---------

AUSTRIA: Eveline Wodak

Sandra Revilla

BELGIUM: Benedicte Lambrecht

Thierry van den Berg Steven van Borm Sylvie Marché

CYPRUS K. Georgiou
CZECH REPUBLIC: Jitka Hornickova

Alexander Nagy Poul Jørgensen

DENMARK: Poul Jørgensen Kurt Handberg

Ants Jauram Kulli Must

FINLAND: Anita Huovilainen

Chrisitne Ek-Kommonen

FRANCE: Jean-Paul Picault

Veronique Jestin

GERMANY: Elke Starick

Christian Grund Timm Harder

GREECE: George Georgiades

V. Rousi

HUNGARY Vilmos Palfi

Adam Balint

IRELAND: Patrick Raleigh

Jean Mooney Orla Flynn

ITALY: Giovanni Cattoli

Ilaria Capua

LATVIA Sigita Rubene

Edvins Olsevskis Dita Krastina

LITHUANIA Jurate Buitkuviene

Vaclovas Jurgelevicius Violeta Bumblauskiene

MALTA Susan Chircop

Alessia Bonici

THE NETHERLANDS: Guus Koch

Jeanet Van der Goot

POLAND: Zenon Minta

Krzysztof Smietanka

PORTUGAL: Miguel Fevereiro

Teresa Faghula

SLOVAK REPUBLIC Miroslav Mojzis

Dirbakova Zuzana

Participants

Olga Zorman-Rojs

Uros Krapez

SLOVENIA:

UK

SPAIN: Azucena Sánchez Montserrat Agüero García Gunilla Hallgren SWEDEN: György Czifra David Graham [N. Ireland] UNITED KINGDOM: Sam McCullough [N. Ireland] Ruth Manyell **OTHER COUNTRIES: BULGARIA** Nadia Oreschkova Gabriela Goujgoulova **CROATIA** Vladimir Savic **MACEDONIA** Toni Kirandziski Dejan Runtevski NORWAY: Jorun Tharaldsen Christine Monceyron Jonassen Bruce David Luliana Onita ROMANIA: Handan Coste Mihai Turcito SWITZERLAND: Richard Hoop TURKEY Fethiye Coven Gulsen Orhan RUSSIA Viktor Irza Manin Timofey Borisovich Artur Abramov **UKRAINE** Oleksandr Khil Dennis Alexander CRL: Ian Brown **COMMISSION:** Maria Pittman Ramunas Freigofas Alberto Laddomada Paul Veroeveren Reinhard Lentner **EFSA** Oriol Ribo **GUESTS EISS** Adam Meijer **SWITZERLAND Anette Baumer** Barbara Thuer **ITALY** Maria Beato Isabella Monne

> Alisdair Cook Marek Slomka

Participants

LUXEMBOURG Mariette Ducatez

Serge Losch Claude Muller

NETHERLANDS Ron Fouchier Philippe Houdart Erik Pottie BELGIUM

Didier Vangeluwe Kristien Van Reeth

Christoph Staubach **GERMANY**

Programme

JOINT TWELFTH ANNUAL MEETINGS OF THE NATIONAL LABORATORIES FOR NEWCASTLE DISEASE AND AVIAN INFLUENZA OF EUROPEAN UNION MEMBER STATES 2006

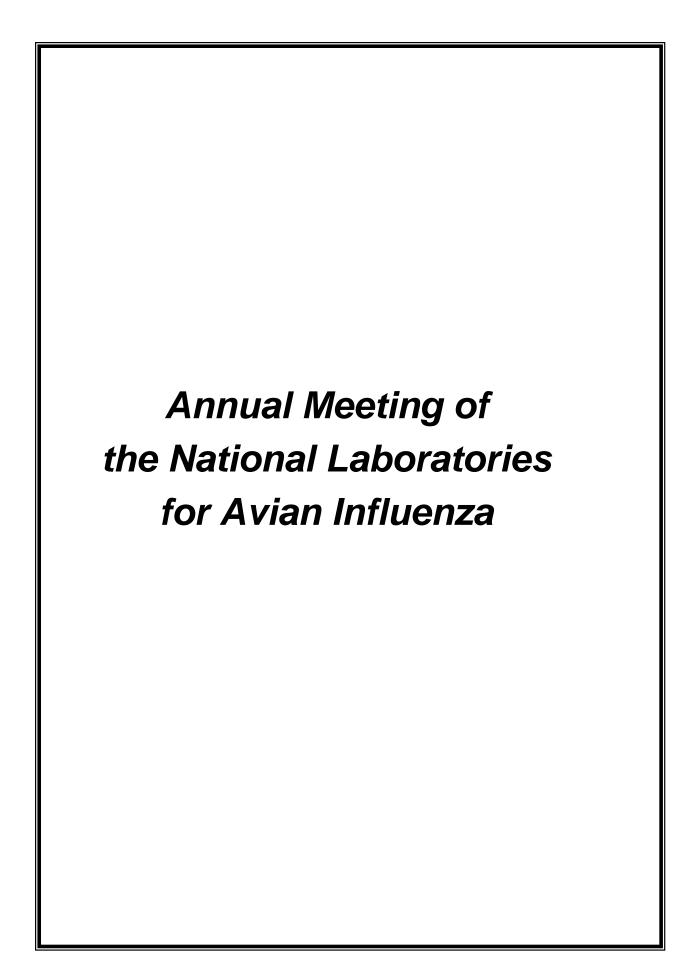
Programme for Monday 16 October 2006

Annual meeting of the National Laboratories for avian influenza (AI)

14:00-14:15	Welcome		
14:15-14:35	Country Reports on AI based on questionnaires	D. Alexander	
14:35-15:00	Update from Russia	V. Irza	
	Original contributions on Al		
15:00-15:20	Preventive vaccination in France during winter/spring 2006	V. Jestin	
15:20-15:40	Respiratory shedding of H5N1 HPAI in wild ducks infected experimentally	R. Fouchier	
15:40-16:00	Tea/Coffee		
16:00-16:20	Influenza pathogenesis studies using mouse models	I. Capua	
16:20-16:50	HPAI H5N1 infection of a Mute Swan flock in the city of Torun in Poland	K. Smietanka	
16:50-17:10	Sublethal infection of poultry with H5N1 HPAI	I. Brown	
17:10-17:30	Review of current status of zoo vaccination in the EU	M. Pittman	
17:30-17:50	Vaccination of Swedish zoo birds against avian influenza H5	G. Czifra	
17:50-18:10	Title to be confirmed (Data from Hungary)	A. Balint	
Close			
Programme for Tuesday 17 th October 2006			
09:15-09:35	Surveys for AI in Poultry and Wild Birds	A. Cook	
09:35-09:50	Spread of Asian-lineage H5N1 HPAI to Europe	I. Brown	

Programme

09:50-10:25	Epidemiological analysis of Al Surveillance data and related IT issues	A. Cook T. Stacy
10:25-10:45	Coffee/Tea	
10:45-11:05	Human influenza – activities of EISS	A Meijer
11:05-11:15	Flu-Lab-Net	I.Brown
11.15-11.35	Highly pathogenic Al H5N1 in swans, Evros Delta, Greece	T. van den Berg
11:35-11:55	Detection of H6N5 in a turkey flock	G.Koch
11:55-12:15	Recent H3N1 isolation from sentinel mallards	V.Jestin
12:15-13:30	Lunch	
13.30-13:50	New molecular methods for pathotyping avian influenza viruses of H5 subtype	T. Harder
13:50-14.10	Antigenic characterisation of H5 viruses by cartography	R.Fouchier
14.10-14.30	Development of N1 ELISA	G.Koch
14.30-14.50	Evaluation of several ELISA kits for Avian Influenza surveillance	T. van den Berg
14.50-15.05	Viral RNA viability in different sample types/processing conditions	M.Slomka
15.05-15.20	Comparison of different methods for the detection of influenza A virus from tracheal and cloacal swabs of chickens infected experimentally	K. Smietanka
15.20-15.35	Tea/Coffee	
15.35-15.55	Ring trial of molecular detection/characterisation methods for Al	M.Slomka
15.55-17.45	Round table discussion of laboratory technical issues to include proposed revisions to the Al diagnostic manual	


Close

Programme

Annual meeting of the National Laboratories for Newcastle Disease

Programme for Wednesday 18th October 2006

09:30-09:50	Country Reports on ND based on questionnaires	D. Alexander
09:50-10:05	Technical report from the EU reference laboratory for 2005	I. Brown
10:05-10:30	Report from the European Commission	R. Freigofas M. Pittman
10:30-11:00	Coffee/Tea	
11:00-11:20	Original contributions on ND Simultaneous detection and pathotyping of PMV1 by real time RT-PCR	I. Brown
11:20-11:40	Phylogenetic analysis of A/H5N1 HPAI viruses and APMV-1 isolated in Africa in 2006	G. Cattoli
11:40-12:00	Interlaboratory comparative tests	R. Manvell
12:00-12:20	Work programme for Community Reference Laboratory for 2007	M. Pittman
12:20-13:30	Lunch	
13.30-14:30	Discussion, laboratory matters, recommendations etc and close Close	

COUNTRY REPORTS ON AVIAN INFLUENZA FOR 2005 BASED ON RESPONSES TO THE QUESTIONNAIRE

Dennis J. Alexander, Ian Brown and Ruth J. Manvell

Community Reference Laboratory for Avian Influenza Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

INTRODUCTION

Continuing the format adopted at the 7th Meeting the information for this report was taken from answers supplied by National laboratories to the following questionnaire:

AVIAN INFLUENZA

1. How many samples from which species of bird/type of poultry have been processed that would have resulted in the isolation of avian influenza viruses in eggs and in cell culture?

Example response:

broilers 200 cloacal swabs in eggs
60 tissue samples in eggs
turkeys 100 cloacal swabs in eggs
140 tissue samples in eggs
140 tissue samples in cell cultures

2. State the number of influenza viruses isolated, their subtype, and the type of bird from which they were isolated.

Example response:

meat turkeys 3 x H6N2

2 x H9N2

waterfowl 2 x H4N6, 1 x H5N2

3. For all influenza viruses isolated state type of poultry or species of bird and IVPI. For H5 and H7 isolates give amino acid sequence at the HA0 cleavage site and conclusion.

Example response:

Bird	subtype	IVPI	HA0 cleavage site	conclusion
Turkeys	H9N2	0.00	nd	LPAI
feral duck	H5N2	0.00	PQRETR*GLF	LPAI

4. Was any active surveillance for avian influenza carried out? If so give details of birds sampled, number of samples and results.

RESULTS

A total of 34 questionnaires was sent to different laboratories in 31 countries. Responses were received from 22/25 EU countries [24/27 laboratories]: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece x 2, Hungary, Ireland, Italy, Lithuania, Luxembourg, Netherlands, Poland, Slovakia, Slovenia, Spain, Sweden, UK Great Britain, UK Northern Ireland and from 4/6 [4/7 laboratories] non-EU countries: Bulgaria, Norway, Romania and Switzerland. The samples tested and the results for avian influenza are summarised in the following pages.

VIRUS ISOLATION REPORTS BY COUNTRY

AUSTRIA

Samples tested None

BELGIUM

Samples tested by inoculation into eggs

Type of bird	Sample	Number
Poultry (chickens and turkey)	Tissue	360
	Cloacal swabs	0
Poultry (others)	Tissue	14
	Cloacal swabs	48
Psittacine	Tissue	10
	Cloacal swabs	30
Duck and geese	Tissue	81
	Cloacal swabs	406
pigeon	Tissue	5
	Cloacal swabs	1
Pet birds	Tissue	6
Quarantine birds	Tissue	199
	Cloacal swabs	307
Ostrich	Tissue	4
Wild birds	Tissue	63
	Cloacal swabs	793

Influenza virus isolated Wild duck: 1x H3N6

RRT-PCR

Seven samples were examined by RRT-PCR for influenza virus RNA.

BULGARIA

Samples tested by inoculation into eggs

Cloacal swabs, carcasses, internal organs - in eggs

Chicken	129
Domestic waterfowl	126
Turkey	12
Partridge	4
Quail	3
Rock Dove	88
Raven	1
Blackbird	1
Starling	1
Crow	2
Titmouse	1
Stork	3
Wild waterfowl	124
Thrush	1
Great crested grebe	1
Mute Swan	1
Black Coot	4
Golden eye	1
Snipe	2
Corncrake	1
King fisher	3
Mallard	6

Influenza viruses isolated None.

CYPRUS

Type of bird	Sample	Number
Chicken broilers	tissue	51
	cloacal swabs	10
Chicken layers	tissue	8
Turkeys	tissue	7
	cloacal swabs	1
Companion birds	tissue	5
	cloacal swabs	17
Ostriches	tissue	11
	cloacal swabs	44
Partridges	tissue	36
	cloacal swabs	1

waterfowl	tissue 170	
	cloacal swabs	32
Pigeons	tissue	60
Wild birds	tissue	222
	cloacal swabs	32
Others	tissue	17
	cloacal swabs	52

Influenza viruses isolated None.

CZECH REPUBLIC

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
layers	tissues	17
broilers	tissues	8
turkeys	tissues	5
pheasants	tissues	3
pigeons	tissues	37
waterfowl	tissues	42
raptors	tissues	4
quarantine birds	faeces	205
other birds	tissues	32

Influenza viruses isolated None

DENMARK

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
chickens and hens	tissue	320
psittacine and other caged birds	tissue	870
	faeces	250
ducks and geese	tissue	33
game birds	tissue	70
turkeys and ostriches	tissue	210
pigeons	tissue	14
wild birds	faeces	700*

*in pools of 5

Samples tested by RT-PCR

Wild birds: 2795 faecal samples

Influenza virus isolated

Wild birds 16 Al viruses isolated -see table

140 of the samples tested were positive by RT-PCR for influenza A 27 of these positive in PCR for H5 none for H7. No viruses were isolated from these samples.

Characterisation of AIV isolates

Bird	subtype	IVPI	HA0 cleavage site	conclusion
feral ducks	3 x H3N2			
feral ducks	H5N3		PQRETR*GLF	LPAI H5
feral ducks	H7N5		PEIPKGR*GLF	LPAI H7
feral ducks	H7N7		PEIPKGR*GLF	LPAI H7
feral ducks	2 x H1N1			
feral ducks	H1N3			
feral ducks	3 x H4N6			
feral ducks	H9N1			
feral ducks	2 x H11N9			
feral ducks	H?N2			

ESTONIA

Cloacal swabs				
Bird species	Number of birds	Pooled samples		
Wild goose	9	4		
Crow	1	1		
Gull	5	3		
Other wild birds	13	7		
"Chicken"	18	3		
Pewit	1	1		
Scolopax	1	1		
Bonasa	1	1		
Branta	14	5		
Swan	1	1		
Wood cock	1	1		
Wild duck	85	31		
Turdus	1	1		
Bombycilla (Wax Wing)	5	1		
Goldeneye (Bucephala)	3	1		

Common Snipe	1	1
Tringa (Yellowlegs)	1	1
Stork	1	1
Pigeon	10	7

Tissue samples				
species	Number of birds	Pooled samples		
Crow	1	1		
Domestic goose	1	1		
Chickens	14	5		
Scolopax	2	2		
Finch	1	1		
Other wild birds	1	1		
Wild duck	3	3		
Jay	1	1		
Grouse	1	1		
Thrush	1	1		
Tit	1	1		
Pigeons	8	7		

Influenza viruses isolated None

FINLAND

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
chickens	tissue samples	32
turkeys	tissue samples	3
geese	tissue samples	10
ducks	tissue samples	7
pheasants	tissue samples	5
cage birds	tissue samples	26
wild birds	tissue samples/cloacal swabs	392

Influenza viruses isolated/detected

	RT-PCR	Virus isolation	subtype	IVPI	no of birds in sample	species
li 9875	positive		H13N6	0.00	3	Larus argentatus
li 10202	positive	positive	not H5 or H7		3	Larus ribibundus
li 10739	positive	positive	not H5		3	Larus argentatus
li 13022	positive	positive	not H5 or H7		5	Larus argentatus

16

FRANCE
Samples tested by inoculation into eggs:

Type of bird	Sample	Number	mRRT-PCR
free range chickens	pooled tissues	5	
chickens/layers	cloacal swabs	10	
	tracheal swabs	4	
	pooled tissues	112	
ducks breeders	cloacal swabs	62	
	pooled tissues	3	
meat pigeons	pooled tissues	2	
turkey breeders	cloacal swabs	176	5
	tracheal swabs	112	
	pooled tissues	5	
meat turkeys	pooled tissues	4	3
pheasants	tracheal swabs	5	
	pooled tissues	5	
Guinea fowl	pooled tissues	4	
force fed ducks	cloacal swabs	15	960
Ornamental birds	cloacal swabs	5	
	pooled tissues	3	
hobby chickens	cloacal swabs	2	
	tracheal swabs	2	
hobby pigeons	cloacal swabs	11	
	tracheal swabs	5	
	pooled tissues	38	
teals	pooled tissues	2	
wild pigeons	cloacal swabs	6	
	tracheal swabs	6	
	pooled tissues	4	
wood pigeons	pooled tissues	4	
gull	pooled tissues	1	
swans	pools		10
other wild birds	pooled cloacal swabs	2	1077

Influenza viruses isolated

Turkeys breeders: 3 x H1N1, 1 x H1N2

Ducks for force feeding: 1 x H2N3, 1 x H4N1, 1 x H5N1, 2 x H5N2, 1 x H5N3,

1 x H6N1, 4 x H6N2, 2 x H6N8, 1 x H11N9 Wild Birds: Teal 1 x H3N8, 2 x H4N6, 1 x H6N8

Mallard: 1 x H5N? only detected by RT-PCR, not isolated; negative with PCR

N1, N2 and N3

Characterisation of AIV isolates

Bird	Subtype	IVPI	HA0 cleavage site	Conclusion
Turkeys	3 x H1N1	0.0	n/a	LPAI
breeders	1 x H1N2	0.0	n/a	LPAI
	1 x H2N3	0.0	n/a	LPAI
	1 x H4N1	0.5	n/a	LPAI
	1 x H5N1	0.0	PQRETR*GLF	LPAI
Ducks for force	2 x H5N2	0.0	2 cleavage sites determined : 1 PQKETR*GLF 1 PQRETR*GLF	LPAI
feeding	1 x H5N3	0.0	PQRETR*GLF	LPAI
	1 x H6N1	0.0	PQIETR*GLF	LPAI
	4 x H6N2	0.0	same cleavage site : 4 x PQIETR*GLF	LPAI
	2 x H6N8	0.0	same cleavage site : 2 x PQIETR*GLF	LPAI
	1 x H11N9	0.0	n/a	LPAI
	1 x H3N8	0.0	n/a	LPAI
	1 x H4N6	0.3	n/a	LPAI
Wild Birds	1 x H4N6	0.0	n/a	LPAI
	1 x H5N?	no isolate	PQRETR*GLF	LPAI
	1 x H6N8	0.0	n/a	LPAI

GERMANY

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
chickens	cloacal swabs	8
turkeys	cloacal swabs	3
ducks	cloacal swabs	103
20000	cloacal swabs	505
geese	tissue samples	3

RT-PCR

In summary, 9078 wild bird samples were processed by real time RT PCR in 2005 of which 223 were positive for presence of AIV M gene-specific sequences. Among these 25 samples were also positive for H5 gene-specific sequences.

Influenza viruses isolated

meat turkeys 1 x H3N8 ostrich 3 x H5N3

wild waterfowl 1 x H1Nx, 5 x H3N8, 1 x H4Nx, 11 x H4N6, 4 x H5N2, 1 x H6N1, 2 x H6N2, 2 x H6N8, 1 x H9N2, 5 x H10Nx

Characterisation of AIV isolates

Bird	subtype	IVPI	HA0 cleavage site	conclusion
turkeys	H3N8	to be done	nd	LPAI
ostriches	3 x H5N3	n.d.	3 x PQRETR*GLF	3 x LPAI
mallards	4 x H5N2	n.d.	4 x PQRETR*GLF	4 x LPAI

GREECE - THESSALONIKI

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
Broilers	cloacal swabs	69
	tissue samples	18
Layers	cloacal swabs	131
	tracheal swabs	98
Meat turkeys	cloacal swabs	16
	tracheal swabs	14
ducks/geese	cloacal swabs	231
	tracheal swabs	51
psittacines	cloacal swabs	125
	tracheal swabs	3
pigeons	cloacal swabs	39
	tissue samples	10
quail	cloacal swabs	145
partridges	tracheal swabs	54
waterfowl	cloacal swabs	365
shore birds	tracheal swabs	331
other wild birds	cloacal swabs	548
	tissue samples	290

Influenza viruses isolated None

GREECE - ATHENS

Type of bird	Sample	Number
broilers	tissue samples	120
layers	tissue samples	43
breeders	tissue samples	10
pigeons	cloacal swabs	72

wild birds	cloacal swabs	62
canaries	cloacal swabs	8
pheasants	cloacal swabs	8
quails	cloacal swabs	6
turkeys	cloacal swabs	5

Influenza viruses isolated None

HUNGARY

Type of bird	Sample	Number
non defined species	tracheal swabs	6
zoo birds	tissue samples	7
collared dove	tissue samples	18
collared dove	cloacal swab	1
teals	cloacal swabs	309
	tracheal swabs	735
(incl. Aythya farina, Anas crecca,)	tissue samples	17
tit	cloacal swabs	26
mute swan	tracheal swab	1
mule Swan	tissue samples	19
	tissue sample	3
seagull	cloacal swabs	8
	tracheal swabs	2
crano	tissue samples	13
crane	cloacal swabs	98
pet birds	tissue samples	13
	tissue sample	1
Eurasian buzzard	tracheal swabs	1
	cloacal swabs	3
	tissue sample	22
pheasant	cloacal swabs	2
	tracheal swabs	33
blackbird	tissue sample	1
partridge	tissue sample	6
quail	tissue sample	1
pigeon	tissue samples	118
barn Owl	tissue sample	1
Guinea-fowl	tissue samples	10
duals	tissue sample	26
duck	tracheal swabs	15
	tissue sample	2
great cormorant	cloacal swabs	9
	tracheal swabs	20
sparrow hawk	tissue samples	3

	tissue samples	7
goose	tracheal swabs	6
reed bunting	cloacal swabs	2
great white egret	cloacal swabs	5
great write egret	cloacal swabs	93
white fronted goose	tracheal swabs	3
grey lag goose	cloacal swabs	15
wren	cloacal swabs	3
	tissue samples	5
parrot finch		1
	tissue sample	17
turkey	tissue sample	
oriole	tissue samples	13
tattler	cloacal swabs	7
starling	tissue sample	21
coot	cloacal swabs	7
magpie	tissue sample	1
grey heron	cloacal swabs	13
chicken	tissue sample	70
	tissue samples	1174
other wild birds	cloacal swabs	158
	tracheal swabs	65
sparrow	tissue samples	2
bean goose	cloacal swabs	10
	tissue samples	9
other wild goose	cloacal swabs	14
Ğ	tracheal swab	26
	tissue samples	13
carrion crow	tracheal swabs	40
kestrel	tissue sample	1
robin redbreast	tracheal swab	1

Influenza viruses isolated None

IRELAND

Type of bird	Sample	Number
broilers	tissue samples	12
chickens	tissue samples	64
	tissue samples	14
ducks	cloacal swabs	15
	tracheal swabs	15
pigeons	tissue samples	22
exotic birds	tissue samples	19
geese	tissue samples	7
turkeys	tissue samples	6

wild birds	cloacal swabs	486
other	tissue samples	17

Influenza viruses isolated None

ITALYSamples tested by inoculation into eggs:

Type of bird	Sample	Number
	pools of cloacal swabs	41
broilers	tissue samples	74
bioliers	pools of tracheal	4
	swabs	4
lovoro	pools of cloacal swabs	1
layers	tissue samples	3
	pools of tracheal	787
meat turkeys	swabs	101
•	tissue samples	1
	pools of cloacal swabs	400
	pools of tracheal	406
domestic duck	swabs	339
	tissue samples	67
	pools of faeces	22
a atricle a a	pools of cloacal swabs	30
ostriches	pools of faeces	5
quail	tissue samples	2
pigeons	tissue samples	2
parrots	pools of faeces	1
1.5	pools of cloacal swabs	0.
	pools of faeces	25
geese	pools of tracheal	2
	swabs	1
	pools of tracheal	
	swabs	1
Guinea fowl	tissue samples	1
	pools of faeces	1
	pools of cloacal swabs	
	pools of tissue	107
mallards	samples	1
	pools of tracheal	3
	swabs	_
	pools of cloacal swabs	0.46
ath an hinda	pools of faeces	310
other birds	pools of tracheal	23
	swabs	1
	1	1

Samples from wild birds:		
mallard (Anac platurbunches)	cloacal swabs	128
mallard (Anas platyrhynchos)	tissue samples	5
tool (Anno propos)	cloacal swabs	41
teal (Anas crecca)	tissue samples	2
pintail (Anas acuta)	cloacal swabs	1
gadwall (Anas strepera)	cloacal swabs	2
shoveller (Anas alyneata)	cloacal swabs	10
shoveller (Anas clypeata)	tissue samples	1
coot (Fulica atra)	cloacal swabs	1
dunlin <i>(Calidris alpina)</i>	cloacal swabs	17
black-headed gull	cloacal swabs	3
(Larus ridibunot doneus)	Cloacal Swabs	3
Ruff (<i>Philomachus pugnax</i>)	cloacal swabs	13
Eurasian wigeon (<i>Anas Penelope</i>)	cloacal swabs	23
Luiasian wigeon (Anas Fenelope)	tissue samples	1
Common pochard (Aythya farina)	cloacal swabs	1
Sandwich tern (Sterna sandvicensis)	cloacal swabs	11
Little ringed plover (Charadrius dubius)	cloacal swabs	1
Flamingo (Phoenicopterus ruber)	cloacal swabs	19
Mediterranean gull (Larus	cloacal swabs	1
melanocephalus)	Cloacal Swabs	-
Garganey (Anas querquedula)	cloacal swabs	2
Whiskered tern (Chlidonias hybrida)	cloacal swabs	1
Wood sandpiper (<i>Tringa glareola</i>)	cloacal swabs	10
Squacco heron (Ardeola ralloides)	cloacal swabs	1
Common tern (Sterna hirundo)	cloacal swabs	4
Starling (Sturno vulgaris)	cloacal swabs	1

Influenza viruses isolated

From intensively reared birds turkeys 3 x H5N2

From backyard flocks
Pekin ducks 1 x H4N6, 1 x H10N6, 1 x H10N7, 1 x H11N2, 2 x H11N9
geese 1 x H2N2
mallards 1 x H4N6, 1 x H10N7, 1 x H11N9

Guinea fowl 1 x H9N2

From wild birds

mallard (Anas platyrhynchos) 1 x H1N1, 1 x H3N8, 1 x H4N6, 1 x H5N1, 1 x H7N7, 1 x H9N2, 1 x H10N7, 1 x H10N8, 1 x H11N9 teal 1 x H1N1, 1 x H1N3, 1 x H5N2, 1 x H5N3, 2 x H7N7 wigeon (Anas penelope) 1 x H6N9 shoveler (Ana clypeata) 1 x H10N7 flamingo (Phoenicopterus ruber) 1 x H6N2

Characterisation of AIV isolates

Bird	subtype	IVPI	HA0 cleavage site	conclusion
meat turkey	H5N2	0.0	PQRETR*GLF	LPAI
meat turkey	H5N2	not done	PQRETR*GLF	LPAI
meat turkey	H5N2	not done	PQRETR*GLF	LPAI
teal	H5N2	not done	PQRETR*GLF	LPAI
teal	H5N3	not done	PQRETR*GLF	LPAI
teal	H7N7	not done	PEIPKGR*GLF	LPAI
teal	H7N7	not done	PEIPKGR*GLF	LPAI
wild mallard	H7N7	not done	PEIPKGR*GLF	LPAI

LITHUANIA

No investigations were undertaken.

LUXEMBOURG

Type of bird	Sample	Number
poultry	organs	6
poultry	faeces	3
goose	faeces	
tawny owl	faeces	1
barn owl	faeces	2
pochard	faeces	6
mallard	faeces	2
teal	faeces	2 3 3
common snipe	faeces	3
water rail	faeces	1
woodcock	faeces	1
WOODCOCK	organs	1
pigeon	organs	1
swan	faeces	6
Swaii	organs	1
gull	faeces	5
rook	organs	1
unknown	organs	1
unknown	faeces	4
coot	faeces	5
duck	faeces	2 2
moorhen	faeces	2

Influenza viruses isolated None

NETHERLANDS

Type of bird	Sample	Number
chickens	trachea swabs	65
	trachea	55
	lung	55
turkeys	trachea	5
	lungs	5
coots	trachea	5
	lung	5
gulls	trachea	5
	lung	5
psittacines	swabs	2
poultry	trachea	14
	cloaca	14
	swabs	14
geese	trachea	14
	lung	14
ducks	trachea	20
	lung	20
	cloaca swabs	40
sparrows	trachea	4
	lungs	4
swans	lung	22
	trachea	22
birds	lung	25
	trachea	25
	unspecified	6
waterbirds	cloaca swabs	78
	trachea swabs	78
wild birds:		
ducks	swabs	28
coots	swab	1
swans	swabs	2
divers	swabs	7
Exotic birds (Q:)		
parrots	cloaca swabs	360
	faeces	12
	manure samples	36
birds	cloaca swab	602
	manure samples	76
	faeces samples	30
pigeon	manure	1

Influenza viruses isolated None

NORWAY

Samples tested

Bird	Specimen	Detection method	Result
wild duck	419 cloacal swabs	RT-PCR + inoc. in eggs of positive RT-PCR samples	80 RT-PCR positive (62 subtyped:H1, H2, H3, LPAI H5N1, LPAI-H5N2, H6, H8, H9, H11, H12 and 18 untyped but H5/H7 negative) 10 AI isolation positive
wild goose	194 cloacal swabs	RT-PCR	Negative

Influenza viruses isolated

10 Al-isolation positive from wild ducks (wild bird surveillance program):

2 X H3, 1 X LPAI-H5N2, 6 X H6, 1 X H9

Characterisation of AIV isolates

Bird	subtype	IVPI	HA0 cleavage site	Conclusion
mallard*	H5N1	n.d	PQRETR*GLF	LPAI
mallard*	H5N2	n.d	PQRETR*GLF	LPAI
teal*	H5N2	n.d	PQRETR*GLF	LPAI

^{*} Al surveillance programme on wild birds

POLAND

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
chickens	tissues	25
pheasants	faeces	40
ducks	tissues	5
pigeons	tissues	10
geese	cloacal swabs	80

Influenza viruses isolated None In addition 277 dead wild birds were tested by RT-PCR for the matrix gene with negative results

ROMANIA

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
chickens	tissue sample	107
CHICKEHS	tissue sample cloacal swabs tissue sample cloacal swabs cloacal swabs tissue sample cloacal swabs tissue sample cloacal swabs tissue sample cloacal swabs	391
turkeys	tissue sample	25
lurkeys	cloacal swabs	81
swans	tissue sample	3
Swaris	cloacal swabs	12
grey heron	cloacal swabs	10
wild goog	tissue sample	2
wild geese	cloacal swabs	2
ducks	tissue sample	4
ducks	cloacal swabs	152
moorhen	tissue sample	1
moonien	cloacal swabs	1

Influenza viruses isolated

35 isolates were obtained all were H5N1 from :

chickens	22 x H5N1
turkeys	3 x H5N1
Swans	5 x H5N1
grey heron	1 x H5N1
wild goose	1 x H5N1
ducks	2 x H5N1
moorhen	1 x H5N1

Characterisation of AIV isolates

Bird	subtype	IVPI	HA0 cleavage site	conclusion
chickens	H5N1		PQGERRRKKRGLF	HPAI
turkeys	H5N1		PQGERRRKKRGLF	HPAI
swans	H5N1	2.85	PQGERRRKKRGLF	HPAI
grey heron	H5N1		PQGERRRKKRGLF	HPAI
wild goose	H5N1		PQGERRRKKRGLF	HPAI
ducks	H5N1		PQGERRRKKRGLF	HPAI
moorhen	H5N1		PQGERRRKKRGLF	HPAI

Molecular analyses were performed by Veterinary Laboratories Agency-Weybridge or by IDAH, and the IVPI by Veterinary Laboratories Agency-Weybridge.

SLOVAKIA

Virus isolation attempts:

Type of bird	Samples	Number	Method
broilers	tissue samples	6	in cell culture
	tissue samples	20	in eggs
	cloacal swabs	5	in eggs
layers	tissue samples	17	in cell culture
	tissue samples	36	in eggs
	cloacal swab	1	in eggs
	cloacal swab	1	in cell culture
turkeys	cloacal swabs	15	in eggs
pigeons	tissue samples	3	in eggs
	cloacal swab	2	in eggs
	cloacal swab	3	in cell culture
	tissue samples	1	in cell culture
wild birds	tissue samples	13	in eggs
	cloacal swabs	5	in cell culture
	cloacal swabs	33	in eggs
	blood	1	in eggs
other birds	cloacal swabs	7	in cell culture
	cloacal swabs	31	in eggs
	tissue sample	6	in eggs
	faeces	12	in eggs

Influenza viruses isolated None

SLOVENIA

Samples tested by inoculation into eggs and by PCR:

Type of bird	Sample	Number in eggs	Number by PCR
broilers	cloacal swabs	30	30
layers	cloacal swabs	16	
	tracheal swabs	8	
turkeys	cloacal swabs	16	17
	tissue sample	1	
galliformes	cloacal swabs	8	8
	tissue sample	1	
pigeons	cloacal swabs	15	15
	tissue samples	2	2
ducks and geese	cloacal swabs	51	47

	tissue samples	2	
herons	cloacal swabs	10	10
	tissue samples	4	4
Charadriiformes	cloacal swabs	5	5
Gruiformes	cloacal swabs	1	1
Pelecaniformes	cloacal swabs	7	7
Podicepediformes	cloacal swabs	2	2
Psitacidae	cloacal swabs	5	5
Passeriformes	cloacal swabs	20	20
others	cloacal swabs	7	7

Influenza viruses isolated None

SPAIN

Samples tested by inoculation into eggs

Type of bird	Sample	Number
blackbird (mirlo)	cloacal swabs	6
broiler	cloacal swabs	25
canary	cloacal swabs	390
chicken	cloacal swabs	45
collared dove	cloacal swabs	13
duck	cloacal swabs	151
falcon	cloacal swabs	21
Griffon vulture	cloacal swabs	13
gull	cloacal swabs	2
golden oriole	cloacal swabs	2
ostrich	cloacal swabs	10
pigeon	cloacal swabs	26
partridge	cloacal swabs	11
psittacines, exotic/pet/quarantine	cloacal swabs	2813
quail	cloacal swabs	2
starling	cloacal swabs	16
sparrow hawk	cloacal swabs	3

Influenza viruses isolated

Bird	subtype	IVPI	conclusion
duck	H6N2	0.00	LPAI
wild bird	H2N9	nd	LPAI

SWEDEN

Type of bird	Sample	Number
imported layer breeders	tissue samples	4
layers	tissue samples	12
backyard poultry	tissue samples	4
wild birds (mallards)	tissue samples	4
zoo birds	tissue samples	1

Influenza viruses isolated Wild birds (mallards) 1 x H5N3

Bird	subtype	IVPI	HA0 cleavage site	conclusion
mallards	H5N3	nd	PQRETR*GLF	LPAI

SWITZERLAND.

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
broilers	tissue samples	1
laying hens	tissue samples	5
fancy breed	tissue samples	1
pet birds	tissue samples	1
pigeons	tissue samples	1

Influenza viruses isolated None

UK GREAT BRITAIN

Samples tested

Type of bird	Sample	Method	Number
	tissues	eggs	300
chickens		cell culture	204
CHICKEHS	cloacal swabs	eggs	247
		cell culture	247
	tissues	eggs	13
turkeys		cell culture	43
	cloacal swabs	cell culture	41
caged birds	cloacal swabs	eggs	325
caged birds		cell culture	38
	tissues	eggs	58
pheasants		cell culture	15
pricasarits	cloacal swabs	eggs	131
		cell culture	56
pigeons/doves	tissues	eggs	100

		cell culture	100
	cloacal swabs	eggs	120
waterfowl	cloacal swabs	eggs	148
wateriowi		cell culture	111
	tissues	eggs	34
raptors		cell culture	29
	cloacal swabs	eggs	20
penguins	tissues	eggs	24
ratites	tissues	eggs	12
other	tissues	eggs	20
Otilei		cells	20

Influenza viruses isolated

waterfowl 1 x H6N2 (mallard) cage birds in quarantine 6 x H5N1 (messias)

Bird	subtype	IVPI	HA0 cleavage site	conclusion
mallard	H6N2	0.00	nd	LPAI
messias	H5N1	2.88	PPRERRRKRGLF	HPAI
			PLRERRRKRGLF x 5	HPAI

UK NORTHERN IRELAND

Samples tested by inoculation into eggs:

Type of bird	Sample	Number
chickens	tissues	11
turkeys	cloacal swabs	60
-	tissues	3
canaries	tissues	5
African grey parrot	cloacal swabs	2

Influenza viruses isolated None

DISCUSSION

Responses

The responses for the last 5 years compared to the number of countries invited to complete the questionnaire have been:

2000 19/29; 2001 22/29; 2002 25/30; 2003 28/30, 2004 22/30.

For 2005 31 countries were sent the questionnaire and 26 responded, which corresponded to 28 of 34 laboratories.

Samples tested

The overall isolation attempts for avian influenza are summarised in Tables 1 to 3 for egg inoculations and Table 3 for cell culture inoculations.

Table 1 Summary of virus isolation attempts in eggs from tissue samples by countries responding to the questionnaire

Bird	Number countries	Number
chickens	24	1736
turkeys	12	321
ducks & geese	13	416
game birds etc	10	234
ostriches	4	24
pigeons	20	656
cage, zoo & Q	11	1394
wild birds	15	2400
others	6	151
TOTAL		6932

Table 2 Summary of virus isolation attempts in eggs from cloacal swabs, and faecal samples by countries responding to the questionnaire

Bird	Number countries	Number
chickens	10	2109
turkeys	10	517
ducks & geese	11	2099
game birds etc	9	359
ostriches	3	93
pigeons	10	305
cage, zoo & Q	11	4876
wild birds	21	6556
others	3	75
TOTAL		16,989

Table 3 Summary of virus isolation attempts in eggs from oropharyngeal swab samples by countries responding to the questionnaire

Bird	Number countries	Number
chickens	7	239
turkeys	2	803
ducks & geese	6	496
game birds etc	3	92
ostriches	0	0
pigeons	3	18
cage, zoo & Q	3	3
wild birds	5	2061
others	2	7
TOTAL		3719

Table 4 Summary of virus isolation attempts from all samples* in cell cultures by countries responding to the questionnaire

Type of bird	Number countries reporting	Number
	attempts	
chickens	2	475
turkeys	1	84
ducks & geese	1	111
game birds	1	61
pigeons	3	244
cage, zoo, pet, quarantine etc	1	38
others	1	29
wild birds	1	5
TOTAL		1048

^{*} tissues/tracheal swabs/cloacal swabs/faeces

To some extent the responses in the questionnaires were confused by the surveillance exercises undertaken in the EU during 2005 in that some countries included that data while others did not. Similarly, some countries included PCR data in their returns while other did not.

Viruses isolated

Of the 28 laboratories responding 17 reported no isolations of Al viruses. These were Austria, Bulgaria, Cyprus, Czech Republic, Estonia, Greece x 2, Hungary, Ireland, Lithuania, Luxembourg, Netherlands, Poland, Slovakia, Slovenia, Switzerland, and UK Northern Ireland.

HPAI

HPAI isolates were restricted to 25 outbreaks in poultry and 10 isolates from wild birds in Romania, plus isolates obtained from a single outbreak in mesias (*Leiothrix argentauris*) at a quarantine station in Great Britain. These are summarised in Table 5.

Table 5 Summary of HPAI viruses isolated.

Subtype	Country	Bird	Number	HA0 cleavage site
H5N1	Romania	chickens	22	PQGERRRKKR*GLF
H5N1	Romania	turkeys	3	PQGERRRKKR*GLF
H5N1	Romania	wild birds	10	PQGERRRKKR*GLF
H5N1	UK-GB	mesias-Q	6	PPRERRRKR*GLF
поит	UK-GB	IIIesias-Q	O	PLRERRRKR*GLF x 5

LPAI H5 and H7 subtypes

The H5 and H7 LPAI viruses isolated in the EU during 2005 are summarised in Table 6.

Table 6 Summary of H5 or H7 subtype LPAI viruses isolated.

Subtype	Country	Bird	Number	HA0 cleavage site
LIENIA	France	force fed ducks	1	PQRETR*GLF
H5N1	Norway	mallard	1	PQRETR*GLF
	France	force fed ducks	1	PQKETR*GLF
	France	force fed ducks	1	PQRETR*GLF
	Germany	mallards	4	PQRETR*GLF
H5N2	Italy	meat turkeys	3	PQRETR*GLF
	Italy	teal	1	PQRETR*GLF
	Norway	teal	1	PQRETR*GLF
	Norway	mallard	1	PQRETR*GLF
	France	force fed ducks	1	PQRETR*GLF
	Denmark	feral duck	1	PQRETR*GLF
H5N3	Germany	ostriches	3	PQRETR*GLF
	Italy	teal	1	PQRETR*GLF
	Sweden	mallard		PQRETR*GLF
H5N?*	France	wild bird	1	PQRETR*GLF
H7N5	Denmark	feral duck	1	PEIPKGR*GLF
	Denmark	feral duck	1	PEIPKGR*GLF
H7N7	Italy	teal	2	PEIPKGR*GLF
	Italy	wild mallard	1	PEIPKGR*GLF

^{*}virus not isolated detected by RTPCR

Other LPAI viruses

A total of 97 LPAI influenza viruses of subtypes other than H5 or H7 was isolated from 9 countries (Table 7). Most of the isolates were from wild waterfowl and reflected the active surveillance carried out during 2005. There were no isolates of these viruses from chickens.

Table 7 Summary of other LPAI viruses isolated by countries responding to the questionnaire

Type of bird	Subtype	No. of isolates	No. Countries
	H1N1	3	1
turkeys	H1N2	1	1
	H3N8	1	1
	H4N6	2	1
	H6N1	1	1
	H6N2	5	2
duale [paultru]	H6N8	2	1
ducks [poultry]	H10N6	1	1
	H10N7	2	1
	H11N2	1	1
	H11N9	4	2
commercial geese	H2N2	1	1
Guinea fowl	H9N2	1	1

	LIANIA	4	0
wild waterfowl	H1N1	4	2
	H1N3	2	2
	H1N?	1	1
	H3N2	3	1
	H3N6	1	1
	H3N8	6	2
	H3N?	2	1
	H4N6	15	3
	H4N?	1	1
	H6N1	1	1
	H6N2	3	2
	H6N8	2	1
	H6N9	2 1	1
	H6N?	6	1
	H9N1	1	1
	H9N2	2	2
	H9N?	2	1
	H10N7	2	1
	H10N8	1	1
	H10N?	5	1
	H11N9	3	2
	H?N2	1	_ 1
other wild birds	H2N9	1	1
	H3N8	1	1
	H4N6	2	1
	H6N2	1	1
		1	1
		1	1
	H6N8 H13N2		1 1

AVIAN INFLUENZA IN RUSSIA: CURRENT SITUATION AND CONTROL STRATEGIES

Victor N. Irza

Head of National Reference Laboratory for Avian Influenza
Federal Governmental Institution Federal Center for Animal Health (FGI
ARRIAH), Russia

Presentation available on website:

http://ec.europa.eu/food/animal/diseases/controlmeasures/avian/crls_proceedings_en.htm

PREVENTIVE VACCINATION IN FRANCE DURING WINTER/SPRING 2006

V.Jestin⁽¹⁾, A. Schmitz⁽¹⁾, C. Guillemoto⁽¹⁾, I. Pierre⁽¹⁾, M. Cherbonnel⁽¹⁾, J. Lamandé⁽¹⁾, C. Allée⁽¹⁾, K. Ogor⁽¹⁾, A. Mesplède⁽²⁾, J.P. Picault⁽¹⁾, P. Massin⁽¹⁾, N. Eterradossi⁽¹⁾, O. Guionie⁽¹⁾, J. Francart⁽³⁾

(1) AFSSA-Ploufragan, National Reference Laboratory for avian influenza and Newcastle disease, B.P. 53, 22440 Ploufragan, France; (2) Laboratoire Départemental, 1 rue Marcel Davis, B.P. 219, 40004, Mont-de-Marsan, France; (3) Direction Générale de l'Alimentation, Bureau Santé Animale, 251 rue de Vaugirard, 75732 Paris Cedex 15, France

Presentation available on website:

RESPIRATORY SHEDDING OF H5N1 HPAI IN WILD DUCKS INFECTED EXPERIMENTALLY

Ron A.M. Fouchier,

Department of Virology, National Influenza Center, Erasmus MC, Rotterdam, The Netherlands

No presentation available

PNEUMO-AND NEUROTROPISM OF AVIAN ORIGIN ITALIAN HIGHLY PATHOGENIC AVIAN INFLUENZA H7N1 ISOLATES IN EXPERIMENTALLY INFECTED MICE

Michela Rigoni^a, Kyoko Shiny^{a,b,c,d,e}, Anna Toffan^a, Adelaide Milani^a, Francesca Bettini^a,Yoshihiro Kawaoka^{d,e,f,g}, Giovanni Cattoli^a, Ilaria Capua^a.

^aOIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Padova, Italy; ^bGraduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; ^cFaculty of Agriculture, Tottori University, Tottori 680-8553, Japan; ^dDivision of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; ^eInternational Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; ^fCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; ^gDepartment of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

An experimental infection of mice was performed in order to investigate the potential for interspecies transmission in mammals of Italian HPAI viruses of the H7N1 subtype. Three avian origin isolates were selected, two strains obtained from ostrich (one of which contained a PB2-627 Lysine residue) and one from a chicken. Following intranasal infection of mice, clinical signs and mortality were recorded in the experimental groups challenged with the two ostrich isolates, while only weight loss was observed in those receiving the chicken strain. Viruses were recovered to a varying extent from respiratory

Tropism of HPAI H7N1 in mice

and nervous tissues of infected animals. These results suggest that HPAI viruses, other than H5N1 and H7N7, may have zoonotic implications, and support the consensus that AI infections in poultry are to be eradicated rather than contained.

This has been published:

Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice. Michela Rigoni, Kyoko Shinya, Anna Toffan, Adelaide Milani, Francesca Bettini, Yoshihiro Kawaoka, Giovanni Cattoli and Ilaria Capua *Virology*, *Volume 364, Issue 1, 20 July 2007*, pages 28-35

HPAI H5N1 INFECTION OF A MUTE SWAN FLOCK IN THE CITY OF TORUŃ IN POLAND

Zenon Minta, <u>Krzysztof Śmietanka</u>, Katarzyna Domańska-Blicharz, Grzegorz Tomczyk, Tadeusz Wijaszka

National Reference Laboratory for AI and ND, Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland

Presentation available on website:

SUBLETHAL INFECTION OF POULTRY WITH H5N1 HPAI

Alan McNally, Elizabeth Aldous, Hassan Nili, Dennis J. Alexander & Ian H. Brown

Community Reference Laboratory for Avian Influenza Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

Community Reference Laboratory, Avian Virology, Veterinary Laboratories

Agency Weybridge, Surrey, UK

Presentation available on website:

REVIEW OF CURRENT STATUS OF VACCINATION OF ZOO BIRDS AGAINST AI IN THE EU

Maria Pittman

Health and Consumer Protection Directorate General, European Commission, Brussels, Belgium

Presentation available on website:

VACCINATION OF SWEDISH ZOO BIRDS AGAINST AVIAN INFLUENZA H5

György Czifra

National Reference Laboratory For Avian Influenza and Newcastle Disease, National Veterinary Institute, Uppsala, Sweden

Presentation available on website:

HPAI IN WILD AND DOMESTIC WATERFOWL IN HUNGARY

Dr. Ádám Bálint

Central Veterinary Institute, Hungary

Presentation available on website:

REPORT ON SURVEYS FOR AVIAN INFLUENZA IN POULTRY AND WILD BIRDS 2005

Alasdair JC Cook, Laura Powell & Ian H Brown

Centre for Epidemiology and Risk Analysis, Veterinary Laboratories Agency Weybridge, Surrey, UK.

Presentation available on website:

SPREAD OF ASIAN-LINEAGE H5N1 HPAI TO EUROPE

Ian H. Brown, B.Z.Londt & J.Banks

Community Reference Laboratory, Avian Virology, Veterinary Laboratories

Agency Weybridge, Surrey, UK

Presentation available on website:

EPIDEMIOLOGICAL ANALYSIS OF AI SURVEILLANCE DATA AND RELATED IT ISSUES

A. Cook & T. Stacy

Centre for Epidemiology and Risk Analysis, Veterinary Laboratories Agency Weybridge, Surrey, UK.

Presentation available on website:

EUROPEAN INFLUENZA SURVEILLANCE SCHEME (EISS)

Adam Meijer

Coordinator virology, EISS

Presentation available on website:

FLU-LAB-NET

lan H. Brown

Community Reference Laboratory, Avian Virology, Veterinary Laboratories

Agency Weybridge, Surrey, UK

Presentation available on website:

HIGHLY PATHOGENIC H5N1 AVIAN INFLUENZA IN DEAD SWANS, EVROS DELTA, GREECE

Didier Vangeluwe^a, George Georgiades^b, Ian Brown^c, Savas Kazantzidis^d, Christophe Rousseau^e, George Handrinos^f & Thierry van den Berg^g

^aRoyal Belgian Institute for Natural Sciences, Belgium; ^bCentre of Thessalonica Veterinary Institutes, Institute for Infectious and Parasitic Diseases, Department of Avian Diseases, Greece; ^cVeterinary Laboratory Agency, Weybridge, United Kingdom; ^dForestry Research Institute (NAGREF), Greece; ^eRoyal Belgian Institute for Natural Sciences, Belgium; ^fGreek Ministry of Agriculture, Wildlife Management dpt., Greece; ^gVeterinary and Agrochemical Research Centre, Belgium

Presentation available on website:

INTRODUCTION OF AN H6N5 INFLUENZA VIRUS IN TURKEYS

Guus Koch

Department of Virology, CIDC Lelystad, The Netherlands

Presentation available on website:

RECENT H3N1 ISOLATION FROM SENTINEL MALLARDS

Véronique JESTIN & François-Xavier BRIAND

AFSSA-Ploufragan, NRL AI/ND, France

Presentation available on website:

NEW DEVELOPMENTS FOR THE PATHOTYPING OF AVIAN INFLUENZA VIRUSES

Timm Harder

O.I.E. and National Reference Laboratory for Avian Influenza, Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, D-17493 Greifswald - Insel Riems, Germany

Presentation available on website:

ANTIGENIC CHARACTERISATION OF H5 VIRUSES BY CARTOGRAPHY

Ron A.M. Fouchier,

Department of Virology, National Influenza Center, Erasmus MC, Rotterdam, The Netherlands

No presentation available

VALIDATION OF AN N1 ANTIBODY COMPETITIVE ELISA.

G. Koch, J.J.M Voermans, and J.A. van der GootCentral Institute of Animal Disease Control, P.O. Box 2004, NL-8203 AA Lelystad, The Netherlands

Introduction.

Vaccination does provide protection against avian influenza but not necessarily against infection and subsequent spread of virus. Therefore the vaccinated population should be monitored for virus infection. Currently, serological monitoring is only possible when using vaccines having a neuraminidase type heterologous to circulating field virus. We validated a commercially available N1 antibody competitive ELISA using sera of experimentally infected birds and negative field sera.

Methods and Methods

Flisa

An N1 antibody competition ELISA (FLUAcN1) was purchased from ID-Vet. The ELISA was performed according to the instruction of the manufacturer with slight modification as indicated. Results were expressed as ratio of the signal of sample and of negative control expressed as percentage (OD_{sample}/OD_{neg. control}x100%). A cut-off value of 45% was recommended by the manufacturer.

Sera

75 chickens were infected with LPAI virus A/Ty/Italy/99 H7N1. Blood was collected at 11 (n=75) and 15 (n=74) days after infection. Sera negative for antibodies against AI viruses were obtained from:

- 78 samples of 4-6 week old broilers vaccinated twice in field against ND
- 84 samples of chickens experimentally infected with A/ch/Penn/83 H5N2 Samples from the Dutch AI monitoring programme negative for antibodies against H5 and H7 viruses:
- 68 samples of ducks
- 48 samples of pheasants
- 20 samples of guinea fowl
- 81 samples of turkeys with antibodies against A/Ty/Neth/2006-H6N5
- 50 samples: 11 of hobby chickens and 39 unspecified birds.

Results

The sensitivity was found to be low (43.6%) when using the incubation time and cut-off value recommended by the manufacturer. However, test sensitivity could be increased when incubating overnight instead of 1 hour as

N1 antibody ELISA

recommended, whereas this had no effect on test specificity. Moreover, when increasing the cut-off value to 70% of the negative control (i.e. 30% inhibition) test sensitivity was increased without effect on test specificity (table 1).

Table 1 Sensitivity and specificity of N1 antibody competitive ELISA using different cut-off values

different out on value					
Cut-off	Sensitivity (%) incubating for		Specificity (%) incubating for		
	1h at 37 C	o/n at RT	1h at 37 C	o/n at RT	
45%	43.6	81.9	100	100	
50%	59.1	88.6	100	100	
60%	82.6	95.3	100	100	
70%	93.3	96.6	81	100	

In table 2 the sensitivity and specificity and the 95% confidence limits are shown when using 144 sera of H7N1 infected birds and 427 sera that tested negative for antibodies against influenza virus in an NP antibody competitive ELISA and or the haemagglutination inhibition test or contained antibodies against influenza viruses with N types different from N1. Incubation was overnight and a cut-off value of 70% was used.

Table 2. Relative sensitivity and specificity of N1 antibody competitive ELISA at cut-off value of 70%.

		Infe	Total	
		Yes	No	
ELISA	+	71	4	148
ELISA	-	3	423	428
Total		74	427	576

	%	Lower limit	Upper limit
Sensitivity	96.1	91.78	100
Specificity	99.1	98.15	100
Predictive value +	94.9	89.98	99.77
Predictive value -	99.3	98.50	100

Conclusions

- The N1 antibody competitive ELISA is suited to detect birds infected with influenza H7N1 virus.
- Using a limited number of sera no cross reactivity of antibodies against N2 and N5 was detected. Moreover reference sera directed against other N types were all negative.
- Sensitivity is increased up to 96% without major effect on specificity if
 - Incubation overnight is used in stead of 1 hour
 - Cut-off is raised from 45 to 60 or 70%
- Further validation of the N1 competitive ELISA is needed using sera of birds vaccinated experimentally and in the field.

EVALUATION OF ELISA KITS FOR AVIAN INFLUENZA SEROLOGICAL SURVEILLANCE

S. Marché, M. Sayouti, B. Lambrecht, M. Decaestecker, M. Steensels, S. Van Borm & T. van den Berg

Avian Virology and Agrochemical Research Centre, Uccle, Brussels, Belgium

Presentation available on website:

EXPERIENCES WITH AI REALTIME PCR SINCE THE H5N1 THREAT IN EUROPE

Marek Slomka

Community Reference Laboratory, Avian Virology, Veterinary Laboratories

Agency Weybridge, Surrey, UK

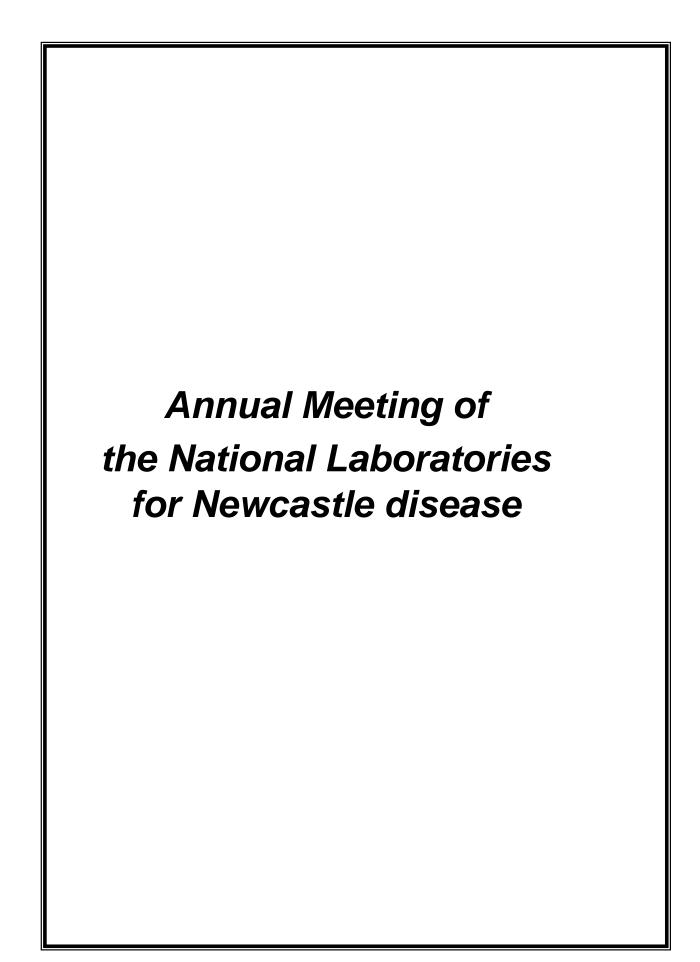
Presentation available on website:

COMPARISON OF DIFFERENT METHODS FOR THE DETECTION OF INFLUENZA A VIRUS FROM TRACHEAL AND CLOACAL SWABS OF CHICKENS INFECTED EXPERIMENTALLY

Krzysztof Śmietanka & Zenon Minta

National Reference Laboratory for AI and ND, Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland

Presentation available on website:


THE FIRST PAN-EUROPEAN AI PCR PROFICIENCY PANEL (SPRING 2006)

Marek Slomka

Community Reference Laboratory, Avian Virology, Veterinary Laboratories

Agency Weybridge, Surrey, UK

Presentation available on website:

COUNTRY REPORTS ON NEWCASTLE DISEASE AND OTHER APMV INFECTIONS FOR 2005 BASED ON RESPONSES TO THE QUESTIONNAIRE

Dennis J. Alexander Ian H. Brown and Ruth J. Manvell

Community Reference Laboratory for Newcastle disease Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

INTRODUCTION

Continuing the format adopted at the 7th Meeting the information for this report was taken from answers supplied by National laboratories to the following questionnaire:

*** NEWCASTLE DISEASE

1. How many samples from which species of bird/type of poultry have been processed that would have resulted in the isolation of paramyxoviruses in eggs and in cell culture?

Example response:

broilers 200 cloacal swabs in eggs

60 tissue samples in eggs

pigeons 100 cloacal swabs in eggs

140 tissue samples in eggs

140 tissue samples in cell cultures

2. State the number of paramyxoviruses isolated, their serotype, and the type of bird from which they were isolated.

Example response:

meat turkeys 3 x APMV-1

2 x APMV-3

pigeons 20 x APMV-1 [PPMV-1]

3. For APMV-1 viruses state type of poultry or species of bird, ICPI, amino acid sequence at F0 cleavage site, mAb group if known and conclusion.

Example response:

Bird	ICPI	amino acids	mAb group	conclusion
broiler	0.2	¹¹² GRQGRL ¹¹⁷	Ε	vaccine
turkeys	1.82	¹¹² RRQRRF ¹¹⁷	C1	Newcastle disease
pigeon	0.9	¹¹² RRQKRF ¹¹⁷	Р	PPMV-1

Country reports on ND 2005

4. Countries with a non-vaccinating status for ND only. Provide information on serological monitoring:-

Example response:

Type of poultry	Number of flocks tested	Number of sera examined	Number of flocks positive	Number of sera positive

RESULTS

A total of 34 questionnaires was sent to different laboratories in 31 countries. Responses were received from 22/25 EU countries [24/27 laboratories]: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece x 2, Hungary, Ireland, Italy, Lithuania, Luxembourg, Netherlands, Poland, Slovakia, Slovenia, Spain, Sweden, UK Great Britain, UK Northern Ireland and from 4/6 [4/7 laboratories] non-EU countries: Bulgaria, Norway, Romania and Switzerland. The responses for number of samples processed for ND [APMV-1] are identical to those for avian influenza virus isolations [see above] unless stated below, the results in terms of avian paramyxovirus isolates are summarised in the following pages.

VIRUS ISOLATIONS REPORTS BY COUNTRY

AUSTRIA

Samples tested None

BELGIUM

APMV isolates

pigeons 6 x PPMV1 chickens 6 x APMV-1 (La Sota)

pheasants 1 x lentogenic APMV-1 (Ulster type)

turkey 1 x APMV-1 (La Sota) other bird 1 x APMV-1 (La Sota)

wild birds 2 x APMV-1

bird	ICPI	amino acids	mAb group	conclusion
pigeon	ND	RRQKR*F	Р	PPMV1
wild birds 1	ND	RQGR*L	?	lentogenic
wild birds 2	ND	RQGR*L	?	lentogenic

BULGARIA

APMV isolates

pigeon 1 x APMV-1 quail 1 x APMV-1 chickens 1 x APMV-1

not characterised

CYPRUS

APMV isolates

Forty one APMV-1 viruses were isolated as follows:

broilers	1
companion birds	8
(canaries parrots)	
flamingos	3
partridges	2
pigeons	13
wild birds	10
layers chickens	2
fattening turkeys	1
faeces (waterfowl?)	1

Characterisation of APMV-1 isolates

The virus isolated from faeces collected at a dam in November 2005 (waterfowl?) had an ICPI of 1.50 and amino sequence KRKKR*F. The sample was collected in the framework of the surveillance programme for AI.

Twenty one of the 41 isolates were sent to the CRL and identified as vaccine strain Hitchner B1. The high incidence of isolation was due to the vaccination of all backyard flocks and companion birds carried out across the island in January 2005 following the isolation of a virulent strain from two pigeons and a wild partridge late in 2004. The majority of the isolations were made during the three months following the vaccination.

CZECH REPUBLIC

APMV isolates

pigeon 1 x APMV-1

		amino acids		genotype	conclusion
pigeon	0.15	¹¹² RRQKRF ¹¹⁷	nd	nd	PPMV-1

DENMARK

APMV isolates

poultry 1 x APMV-1 from broiler breeders

wild birds 3 x APMV1

2 x APMV-4 1 x APMV-6

caged birds in quarantine

1 x APMV-1 from finches 1 x APMV-1 from a cockatoo 5 x APMV-2 from finches 1 x APMV-3 from finches

Characterisation of APMV-1 isolates

bird	ICPI	amino acids 109-124	genotype or mAb group ¹	conclusion
finches	1.88	SGGRRQRR*FIGAVIGS	5b	ND
cockatoo	1.99	SGGRRQKR*FIGAVIGS	5c	ND
fowl ²	1.79	SGGRRQRR*FIGAVIGS	5b	ND
mallard (wild)	ND	SGGEKQGR*LIGAIIGG	C2/G-Q	lentogenic
mallard (wild)	ND	SGGERQER*LVGAIIGG	Н	lentogenic
mallard (wild)	ND	SGGGKQGR*LIGAIIGG	C2/G-Q	lentogenic

¹Deduced from sequences of the F gene (cleavage site region)

ESTONIA

APMV isolates Feral ducks 3 x APMV-6

FINLAND

No isolates

FRANCE

APMV isolates

pigeons hobby 7 x PPMV-1 meat pigeons 1 x PPMV-1

ducks [force feeding] 3 x APMV-1 avirulent

pheasant 1 x PPMV-1

pheasant 1 x APMV-1 [detected not isolated].

ornamental birds 1 x APMV-3 chicken (quarantine sentinel) 1 x APMV-3 wild birds 2 x APMV-4

²40,00 broiler parent stock

Characterisation of APMV-1 isolates

bird	ICPI	amino acids	genotype	conclusion	
	1 x 1.1				
	3 x 1.2	6 x RRQKRFIG			
pigeon/hobby	1 x 1.3	0 X KKQKKFIG	4b	PPMV-1 virulent	
	1 x 1.4				
	1 x 1.0	RRRKRFIG			
meat pigeon	1.0	RRQKRFIG	4b	PPMV-1 virulent	
pheasant	1.6	RRQKRFIG	4b	PPMV-1 virulent	
pheasant	(no isolate) ¹	RRQRRFIG	5b	ND virulent	
duck [force feeding]	2 x 0.0	2 x GKQGRLIG	1a	APMV-1 avirulent	
duck [force feeding]	< 0.4 ²	GKQGRLIG	1a	APMV-1 avirulent	

¹detected but not isolated; ²sample had bacterial contamination

GERMANY

APMV isolates

pigeons 53 x APMV-1 (PPMV-1)

1 x APMV-1 (La Sota)

2 x APMV-3

layers 2 x APMV-1 (La Sota) turkeys 2 x APMV-1 (La Sota)

aviary birds 5 x APMV-2

1 x APMV-3

wild birds 4 x APMV-1 (lentogenic)

1 x.APMV-6

Typing done by use of monoclonal antibodies. Sequences not determined.

GREECE (Athens)

APMV isolates

broilers from 1 holding in Fokida	1 x APMV-1
broilers from 1 holding in Messina	1 x APMV-1
broilers from 1 holding in Evia	1 x APMV-1
broilers from 1 holding in Thessaloniki	1 x APMV-1

bird	ICPI	amino acids	genotype	conclusion
broilers	1.85	112RRQKRF117	5d	Newcastle disease
broilers	1.80	112RRQKRF117	5d	Newcastle disease
broilers	1.81	112RRQKRF117	5d	Newcastle disease
broilers	1.90	¹¹² RRQKRF ¹¹⁷	5d	Newcastle disease

GREECE (Thessalonica)

APMV isolates broilers 2 x APMV-1

Characterisation of APMV-1 isolates

				conclusion
broilers	1.625	¹¹² RRQKR*F ¹¹⁷	5d	Newcastle disease
broilers	1.625	¹¹² RRQKR*F ¹¹⁷	5d	Newcastle disease

HUNGARY

APMV isolates

chickens 2 x APMV-1 goose 1 x APMV-1

Characterisation of APMV-1 isolates

Bird	ICPI	amino acids	mAb group	genotype	conclusion
chicken	0.2	-	Е	2	vaccine
chicken	0.2	-	E	2	vaccine
goose	0.3	-	Е	2	vaccine

IRELAND

APMV isolates

pigeons 1 x PPMV-1 swans 3 x APMV-1

Characterisation of APMV-1 isolates

Viruses not characterised

ITALY

APMV isolates

broilers 8 x APMV-1 rural chickens 1 x APMV-1

pigeons 39 x APMV-1 (PPMV-1) collared doves 14 x APMV-1 (PPMV-1)

 $\begin{array}{ll} \text{ducks} & \text{4 x APMV-1} \\ \text{ducks} & \text{1 x APMV-6} \end{array}$

Country reports on ND 2005

In wild birds

teal (Anas crecca) 1 x APMV-6 mallard (Anas platyrhynchos)

mallard (Anas platyrhynchos)

Eurasian wigeon (Anas penelope)

flamingo (Phoenicopterus ruber)

robin (Erithacus rubecula)

1 x APMV-4

1 x APMV-7

1 x APMV-7

1 x APMV-7 1 x APMV- 4

1 x APMV-1 (PPMV-1)

Characterisation of APMV-1 isolates

bird	ICPI	amino acids 112-117	mAb	genotype	conclusion
		112-117	group		
broilers	0.0-0.3	GKQGR*L	not identifiable	1	8 x vaccine
rural chicken	0.20	GKQGR*L	not identifiable	1	1 x vaccine
pigeon	0.6-1.4	RRQKR*F	Р	4b	39 x PPMV-1
dom.ducks	0.0	ERQER*L	not	6	1 x lentogenic
dom.ducks	0.0-0.5	GKQGR*L	identifiable	1	4 x lentogenic
collared dove	0.7-1.4	RRQKR*F	Р	4b	14 x PPMV-1
robin	1.20	RRQKR*F	Р	4b	1 x PPMV-1

LITHUANIA

No investigations

LUXEMBOURG

No isolates

THE NETHERLANDS

APMV isolates

chickens 1 x APMV-1 1 x APMV-1 ducks exotic birds (Q) 4 x APMV-2

bird	ICPI	amino acids	mAb group	genotype	conclusion
chicken	nd	lentogenic ¹	nd	nd	vaccine
duck	0	nd	nd	nd	vaccine

¹RT-PCR used to differentiated between lento- and meso/velogenic viruses.

Country reports on ND 2005

NORWAY

APMV isolates

chickens 1 x APMV-1 wild duck 1 x APMV-1

Characterisation of APMV-1 isolates

bird	ICPI	amino acids	genotype	conclusion
chicken	0.0	¹¹² GKQGRL ¹¹⁷	а	lentogenic APMV-1
wild duck	nd	¹¹² GKQGRL ¹¹⁷	b	lentogenic APMV-1

a: Closely related to pheasant/Finland, and duck/Denmark (2003)

b: Closely related to wild duck Far-East/Russia (2001)

POLAND

APMV isolates

feral pigeons 2 x PPMV-1 mallards 1 x APMV-3

Characterisation of APMV-1 isolates

bird	ICPI	amino acids	mAb group	genotype	conclusion
feral pigeon	1.05	¹¹² RRQKRF ¹¹⁷	Р	4b	PPMV-1
feral pigeon	1.00	¹¹² RRQKRF ¹¹⁷	Р	4b	PPMV-1

ROMANIA

APMV isolates

chickens, 96 x APMV-1 red-throated diver *(Gavia stelata)* 1 x APMV-1

pigeons 1 x APMV-1 [PPMV-1]

partridge(Perdix perdix) 1 x APMV-1

bird	ICPI	amino acids	mAb group	genotype	conclusion
chickens	1.32-1.9	nd	nd	nd	Newcastle disease
partridge	1.75	nd	nd	nd	Newcastle disease
diver	1.78	nd	nd	nd	virulent APMV-1
pigeon	1.86	nd	nd	nd	PPMV-1

SLOVAKIA

APMV isolates

pheasants 2 x APMV-1 - 1 holding

turtledove 1 x PPMV-1 wild duck 1 x APMV-1 pigeons 18 x PPMV-1

racing pigeons 5 x PPMV-1 - 1 dovecote

Characterisation of APMV-1 isolates

bird	ICPI	amino acids	genotype	conclusion
racing pigeon	nd	112RRKKRF117	4b	PPMV-1 (5x)
pigeons	nd	112RRQKRFI117	4b	PPMV-1 (12x)
pigeons	nd	112RRKKRF117	4b	PPMV-1 (6x)
turtledove	nd	112RRQKRF117	4b	PPMV-1
pheasants	nd	112GRQGRL117	2	vaccine (2x)
wild duck	nd	112GKQGRL117	1	lentogenic APMV-1

SLOVENIA

APMV isolates

pigeons 3 x APMV-1 [PPMV-1]

mallard 1 x APMV-2

Characterisation of APMV-1 isolates

No further characterisation

SPAIN

APMV isolates

pigeon 1 x APMV-1(PPMV-1) collared-dove 1 x APMV-1(PPMV-1)

wood pigeon 1 x APMV-7

bird	ICPI	amino acids	mAb group	conclusion
collared dove	nd	¹¹² RRQKRF ¹¹⁷	Р	PPMV-1
pigeon	nd	¹¹² RRQKRF ¹¹⁷	Р	PPMV-1

SWEDEN

APMV isolates

layers 2 x APMV-1

Characterisation of APMV-1 isolates

		amino acids	mAb group	genotype	conclusion
layers	1.27	¹¹² RRQRR*F ¹¹⁷	nd	5b	NDV
layers	1.85	112RRQRR*F117	nd	5b	NDV

SWITZERLAND

APMV isolates

None

UNITED KINGDOM [GREAT BRITAIN]

APMV isolates

pigeons/doves 17 x APMV-1 [PPMV-1]

3 x APMV-7

chickens 4 x APMV-1 (lineage 1)

caged birds 1 x APMV-1 (parrot – lineage 1)

7 x APMV-2

1 x APMV-3 (African grey parrot)

game birds 3 x APMV-1 (lineage 5b)

owls 1 x APMV-1 (spotted eagle owl- lineage 5b)

Characterisation of APMV-1 isolates

bird	ICPI	amino acids	genotype	conclusion
broiler	0.04	GKQGRL	1	vaccine
pheasant	1.26-1.60	¹¹² RRQKRF ¹¹⁷	5b	3 x Newcastle disease
pigeon	nd	112RRQKRF117	4b	PPMV-1
parrot	0.00	GKQGRL	1	Newcastle disease
owl	1.41	112RRQKRF117	5b	Newcastle disease

UNITED KINGDOM [NORTHERN IRELAND]

APMV isolates

None

DISCUSSION OF RESULTS

Of the 28 laboratories responding, six, Austria, Finland, Lithuania, Luxembourg, Northern Ireland and Switzerland, reported no isolations of APMV viruses from the samples tested.

The other 22 laboratories reported a total of 427 avian paramyxoviruses. Three hundred and seventy nine of these were APMV-1 viruses (Table 1). Seventy five of these APMV-1 viruses were of low virulence representing the isolation of live vaccine viruses or naturally occurring avirulent viruses. Of the 304 virulent APMV-1 isolates 187 were PPMV-1 viruses from pigeons or doves and 96 were isolates from ND outbreaks in Romania. Viruses characterised as the PPMV-1 variant virus were also isolated from meat pigeons and pheasants in France and a robin in Italy. Six countries reported isolates of virulent APMV-1 viruses from poultry. ND was reported in chickens in Denmark (broiler parents), Sweden (layers) Greece and Romania. An outbreak in pheasants in Great Britain appeared to be related to infection of a pheasant flock in France. The virus was not isolated from the French pheasants, but infection was detected by RT-PCR and the nucleotide sequence of the PCR product indicated the same virus was involved. The outbreaks in Denmark, Sweden France and Great Britain were caused by closely related viruses of genotype 5b.. An unrelated virus [genotype 5d] was responsible for the ND outbreaks in Greece. A total of 187 PPMV-1 isolates were obtained from pigeons and collared doves in 12 different countries and this once again emphasises the continued widespread presence of this virus in Europe

Table 1 Summary of APMV virus isolations reported

Type of APMV	Bird	No. countries	No. isolates
virulent APMV-1	pigeons & doves	12	187
	meat pigeons	1	1
	chickens	4	104
	partridge	1	1
	pheasants	2	5
	caged birds in Q	3	3
	red throated diver	1	1
	robin	1	1
	wild bird faeces	1	1
low virulence APMV-1	chickens	8	28
	ducks	2	6
	turkeys	3	4
	pheasants	2	3
	partridges	2	1
	goose	1	1
	wild birds	6	23
	cage birds	2	9
APMV-2	caged birds in Q	3	16
	aviary birds	1	5
	mallard	1	1

Country reports on ND 2005

APMV-3	caged birds in Q	2	5
	ornamental/aviary	2	2
	mallard	1	1
APMV-4	wild birds	2	5
APMV-6	wild birds	3	5
	dom. duck	1	1
APMV-7	flamingo	1	1
	pigeons & doves	2	4
APMV-?	wild birds	1	2

SEROLOGY FOR APMV-1

Six countries with non-vaccinating policies reported surveillance for APMV-1 antibodies in unvaccinated birds using haemagglutination inhibition tests and their results are listed below:

ESTONIA

Type of poultry	Number of flocks tested	Number of sera examined	Number of flocks positive	Number of sera positive
chickens	14	2052	0	
quail	1	3	0	

FINLAND

Type of poultry	Number of flocks tested	Number of sera examined	Number of flocks positive	Number of sera positive
broilers	77	4494	1 ^a	24 ^a
turkeys	33	1671	4 ^b	92 ^b
layers	16	751	0	0
geese	11	80	1 ^c	6 ^c

^anon-specific reaction; ^bmaternal antibodies in imported birds; ^cno virus isolated

NORWAY

Type of poultry	Number of flocks tested	Number of sera examined	Number of flocks positive	Number of sera positive
chicken*	111	6699	3	109
chicken**	30	904	0	0
turkey*	6	363	0	0
turkey**	10	295	0	0
dom. geese*	1	61	0	0
dom. geese**	3	93	0	0

Country reports on ND 2005

dom. duck*	1	63	0	0

^{*}Surveillance; **Import

SWITZERLAND

Type of poultry	Number of flocks tested	Number of sera examined	Number of flocks positive	Number of sera positive
layers	52	536	6	21*
broilers	49	514	21	78*
turkeys	3	30	0	0
fancy breeds	2	11	0	0
pigeons		22		13**
pet birds		119		8***

^{*}during quarantine; **vaccination is allowed in pigeons; ***APMV-3 cross

SWEDEN

Type of poultry	Number of flocks tested	Number of sera examined	Number of flocks positive	Number of sera positive
imported broiler breeders in isolation	11	3269		
broiler breeders	86	5040		
imported layer breeders in isolation	7	2100		
layer breeders	17	1020		
layers	8	298	1	30
imported turkey breeders in isolation	6	1582		
turkey breeders	8	480		
backyard poultry	12	415		
birds from zoo		1		

CONCLUSION

As in previous years it can be concluded from the results reported in the returned questionnaires that there was a low prevalence of ND [virulent APMV-1 infections] in European poultry in 2005. However, there are two areas of concern. Most of the outbreaks reported in Northern Europe since 1996 have been the result of infections with closely related viruses of clade

Country reports on ND 2005

5b. Due to the isolation of similar viruses from wild birds from time to time, there has been some speculation that there may be a reservoir of these viruses in wild birds. Equally the continued presence of ND in the racing and feral pigeon/dove populations in Europe [an epizootic that now spans 24 years] remains a serious cause for concern and a continuing threat for domestic poultry and wild life.

TECHNICAL REPORT FOR THE COMMUNITY REFERENCE LABORATORY FOR AVIAN INFLUENZA, 2005

Ian H. Brown

Community Reference Laboratory for Newcastle disease Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

I. LEGAL FUNCTIONS AND DUTIES

The functions and duties are specified in Annex V of Council Directive 92/40/EEC (Official Journal of the Communities No L 167 of 22.6.1992).

II. OBJECTIVES FOR THE PERIOD JANUARY – DECEMBER 2005

- Characterising viruses submitted to the Laboratory by Member States and third countries listed in Commission Decisions 95/233/EC and 94/85/EC. This will, at the request of the European Commission or the submitting National Laboratory or at the discretion of the Reference Laboratory, include:
 - a) Determining the intravenous pathogenicity index (IVPI)
 - b) Antigenic typing of viruses and both haemagglutinin and neuraminidase subtypes
 - c) Determining the amino acid sequence at the haemagglutinin cleavage site of H5 and H7 subtype viruses
 - d) Limited phylogenetic analysis to assist in epidemiological investigations.

Work Plan: The number of viruses received will be dependent on the outbreaks occurring and those viruses submitted, as a guide the numbers received since 1988 are shown in Table 1.

Table 1: Number of submissions to the CRL by year since 1988.

1988	1989	1990	1991	1992	1993	1994	1995	1996
401	188	113	154	199	294	385	605	284
1997	1998	1999	2000	2001	2002	2003	2004	2005
227	285	357	704	316	333	464	426	387

The haemagglutinin and neuraminidase subtypes of all influenza viruses submitted will be determined. IVPI tests will be done at the request of the submitting laboratory or the Commission. The amino acids at the haemagglutinin cleavage site of all viruses of H5 and H7 subtype will be

deduced by nucleotide sequencing. For selected viruses sequencing will be extended into other areas of the H gene to allow phylogenetic analyses.

% Resources: 60 %

WORK DONE: The viruses submitted in 2005 were characterised as shown in Table 2.

Table 2: Identification of viruses submitted to the reference laboratory in 2005

Virus identification	Number
Paramyxoviruses	179
Influenza A viruses	128
H2N?	3
H2N3	3 2 1
H3N?	1
H3N2	1
H3N8	1
H4N?	3
H5N1	47
H5N2	6 2 1
H5N3	2
H6N2	
H7N1	1
H7N4	1
H7N7	8 2
H8N1	
H8N4	1
H9N2	31
H10N?	31 2 2 8 2 2 1
H10N4	2
H10N7	8
H11N9	2
H13N?	2
H13N6	
Untyped	52
Reoviruses	5
Not viable	23

In addition to conventional typing of the viruses submitted a total of 67 Al viruses was subjected to nucleotide sequencing and the amino acids at the haemagglutinin cleavage site deduced. Of these 44 had multiple basic amino acids and therefore were HPAI viruses, 23 had amino acid motifs consistent with virus of low pathogenicity. All of the H5N1 viruses received were HPAI.

The presence of basic amino acids at the haemagglutinin cleavage site is now well accepted as demonstrating virus virulence for Al viruses and intravenous pathogenicity index [IVPI] tests to assess the virulence of the submitted viruses were only done at the request of the submitting country. In all 6 IVPI tests were done on request.

Ongoing and timely phylogenetic analyses of H5, H7 and H9 was done. In particular detailed analyses of emerging H5N1 viruses was done and data presented at SCOFCAH and EU working group meetings as required.

Estimated actual resources: 55%

2. Maintain and distribute virus repository and reagents necessary for virus characterisation.

Work Plan: Maintenance of existing repository will continue. All viruses submitted to the CRL will be added to the repository after characterisation. Most viruses will be maintained in a frozen state, but selected, representative viruses will be freeze dried. Reagents such as polyclonal chicken antisera, and control antigens will be maintained at levels previous demands have indicated to be necessary to enable characterisation of all 16 H and all 9 N subtypes.

% Resources: 6 %

WORK DONE: The Al viruses received (including a new H subtype) were added to the repository. Reagent stocks were maintained, at least at previous levels [Table 3] and during the year the following were supplied:

ANTIGENS: 33ml H1 antigen, 2ml of H2 antigen,34ml H3 antigen, 4ml of H4 antigen, 2524ml of H5 antigen,100ml of H6 antigen,1084ml of H7 antigen,1ml of H8 antigen,135ml of H9 antigen,1ml H10 antigen & 5ml of H16 antigen

In addition, 35 x 1ml of H5N1 reference material (Asian-lineage H5N1 HPAI) was provided for use in molecular diagnostic assays.

ANTISERA: 39ml of H1 antiserum, 20ml of H2 antiserum, 50ml of H3 antiserum, 25ml of H4 antiserum, 280ml of H5 antiserum, 55ml of H6 antiserum, 190ml of H7 antiserum, 20ml of H8 antiserum, 95ml of H9 antiserum, 30ml of H10 antiserum, 20ml of H11 antiserum, 27ml of H12 antiserum, 15ml of H13 antiserum, 20ml of H14 antiserum, 20ml of H15 antiserum and 12ml of H16 antiserum.

Estimated actual % resources: 4%

Table 3. Stocks of polyclonal chicken sera and virus antigens for HI tests held at the Reference Laboratory.

Type	Serum		Antigen	
	Quantity ^a HI titre ^b		Quantity ^a	HA titre ^b
SPF	100	<1		
H5	350	7	400	6
H7	300	6	350	7

^a Number of freeze-dried ampoules containing 0.5 ml of serum or antigen at the indicated titre.

3. Prepare and distribute antisera, antigens and reagents for the inter-laboratory comparison tests.

Work Plan: Antisera and antigens to be used in the comparison tests will be prepared, freeze-dried and dispatched to the National Laboratories in time for results to be reported at the next annual meeting.

% Resources: 6 %

WORK DONE: Antigens were prepared and dispatched to EU National Laboratories and those of EFTA and accession countries [total 31 laboratories]

Estimated actual % resources: 4%

4. Analysis of results submitted by National Laboratories for the inter-laboratory comparison tests.

Work Plan: As in previous years, results submitted by the National Laboratories will be analysed and presented at the annual meeting.

% Resources: 3 %

WORK DONE: Results were received, analysed and an oral presentation made at the Annual Meeting in 2005. A written report will appear in the proceedings.

Estimated actual % resources: 2%

5. Conduct work to evaluate reported problem areas in diagnosis.

Work Plan: Staff of the CRL will be available for consultation by National Laboratories, problem sera and other reagents will be received from National Laboratories for testing and evaluation.

% Resources: 2 %

^b HI and HA titres are expressed as log₂. The SPF serum had an HI titre of <1 to each antigen.

WORK DONE: Staff of the CRL were consulted on an ad hoc basis.

Estimated actual % resources: 1%

6. Supporting by means of information and technical advice National Avian Influenza Laboratories and the European Commission during epidemics.

Work Plan: Staff of the CRL will be available for consultation and will forward all relevant information to the National Laboratories or the Commission, as appropriate.

% Resources: 3 %

WORK DONE: Staff of the CRL were consulted on numerous occasions by other National Laboratories representatives of member states and the Commission including participation in missions. In addition CRL staff took part in the following consultation groups and meetings

- 1) EU mission to Romania on avian influenza (Ruth Manvell)
- 2) Mission to South Africa at the request of the South African Government (Ian Brown and Ruth Manvell) to provide advice on control and diagnosis of HPAI principally in Ostriches.
- 3) OIE ad hoc group on avian influenza (Dennis Alexander)
- 4) Scientific Committee for the OIE/FAO Network of Expertise on Avian Influenza (OFFLU) [Dennis Alexander, Ian Brown)
- 5) Scientific Collaborators Committee for the OIE/FAO Network of Expertise on Avian Influenza (OFFLU) [Ruth Manvell]
- 6) OIE (OFFLU) mission to Russia to assess the avian influenza situation in wildlife and the national measures being taken to minimize the risk of international spread (Ian Brown).
- 7) European Food Safety Authority Working group on Avian influenza (Dennis Alexander)
- 8) European Food Safety Authority Working group on 'Migratory birds and their possible role in the spread of highly pathogenic avian influenza wild birds' (lan Brown)
- 9) European Food Safety Authority Working group on captive birds (Dennis Alexander)
- 10) Representing OIE at FAO Inception Workshop in India 22nd August-26th August (Ian Brown)
- 11)EU Commission Working Group on Revision of the Directive for the Control of Avian Influenza [Ian Brown]
- 12)EU Al survey guideline revision, Brussels, [lan Brown]
- 13)EU Avian Influenza Preparedness Planning. Workshop on improving collaboration between animal and human health surveillance networks in the Community. Luxembourg 28 June 2005
- 14)Ad-hoc advice in relation to Al global situation especially in SE Asia
- 15)Coordination of collaboration between animal and human influenza surveillance networks in Europe

- 16)FAO/OIE/WHO meeting on strategies for control of HPAI in Asia, Ho Chi Minh City, Vietnam, 22-25 February, 2005 [lan Brown]
- 17)EU Commission Working Group for revision of guidelines for Al surveillance in wild birds in member states
- 18)APEC Conference on AI in Taiwan 20th June-27th June 2005 [lan Brown]
- 19)2nd European Influenza Conference in Malta 12th September-14th September 2005, invited speaker on EU AI surveillance [Ian Brown]

Estimated actual % resources: 20%

7. Prepare the programme and working documents for the Annual Meeting of National Avian Influenza Laboratories.

Work Plan: The organisation of the Annual Meeting in collaboration with the Commission's representative will be done as in previous years.

% Resources: 2 %

WORK DONE: In collaboration with the Commission's representatives the Annual Meeting was organised and held at the Belgium NRL [Centre d'Etudes et de Recherches Vétérinaires et Agrochimiques, (CERVA), Brussels] in October 2005.

Estimated actual % resources: 4%

8. Collecting and editing of material for a report covering the annual meeting of National Avian Influenza Laboratories.

Work Plan: Receive and collate submissions edit and produce report of 2004 proceedings before 2005 Annual meeting. Receive and collate submissions of 2005 meeting.

% Resources: 3 %

WORK DONE: Proceedings of the 2004 meeting were produced before the 2005 meeting.

Estimated actual % resources: 2%

9. Carry out work in relation to the surveys for avian influenza in poultry and wild birds implemented by Member States during 2004/05, revision of guidelines and production of final report.

Work Plan: Produce and distribute panel of reagents, supply technical support. Produce final survey report and ensure guidelines are revised and adopted

% Resources: 8%

WORK DONE: The CRL produced and held an enlarged panel of reagents. All national laboratories were supplied with reagents for the conduct of the survey. Technical support was provided to the programme including direction on application of the survey and verification of results by CRL if required. All results received from member states were analysed and a final survey report produced. This report contained a detailed epidemiological analyses that was used to inform discussions for revision of the guidelines at a specific meeting held in Brussels with representatives of all member states. The revised guidelines were adopted in decision doc SANCO/10137/2005.

Estimated actual % resources: 6%

10. In the light of the occurrence of influenza in birds and other animals keep under review the possible zoonotic impact arising from the risk of reassortment between influenza viruses.

Work Plan: Analyse data as it becomes available

% Resources: 2%

WORK DONE: This was done through CRL staff membership of the WHO/FAO/OIE animal-human influenza network and the various consultations indicated in section 6. In particular closer interaction was achieved with European Influenza Surveillance System (EISS) network for human influenza with a formal meeting held in Luxemborg with various representation from the EU commission. In addition, close watch was kept on situations relating to spread of AI viruses from birds to humans and this is reflected in the publication outputs from CRL staff.

Estimated actual % resources: 2%

11. Preparation and publications of articles and reports associated with above work.

% Resources: 1%

WORK DONE:

RELEVANT PUBLICATIONS IN 2005

- ALEXANDER, D.J. (2005). Avian influenza. Chapter 2.7.12. Manual for Diagnostic Tests and Vaccines for Terrestrial Animals. OIE: Paris. http://www.oie.int/eng/normes/MMANUAL/A 00037.htm
- 2. World Health Organisation Global Influenza Program Surveillance Network; VLA authors, I.H.BROWN, J.BANKS & M.SLOMKA (2005). Evolution of H5N1 avian influenza viruses in Asia. Emerging Infectious Diseases 11 (10), 1515-1521
- 3. ALEXANDER, D.J., CAPUA, I. & BROWN, I.H. (2005). 1. Avian influenza viruses and influenza in humans. Proceedings of the Frontis Workshop on Avian Influenza, Wageningen http://library.wur.nl/frontis/avian influenza/index.html
- 4. ALEXANDER, D.J. (2005). 12. Should there be a change in the definition of avian influenza for legislative control and trade purposes? Proceedings of the Frontis Workshop on Avian Influenza, Wageningen http://library.wur.nl/frontis/avian influenza/index.html
- ALEXANDER, D.J. & MANVELL, R.J. (2005). Technical Report of the Community Reference Laboratory for avian influenza 2003. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of Countries of the European Union, VLA Weybridge, 2004 pp. 9-15.
- ALEXANDER, D.J. (2005) Outbreaks of H5 and H7 avian influenza 1994-2004. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of EU Member States, VLA Weybridge, 2004 pp. 66-85.
- ALEXANDER, D.J. & MANVELL, R.J. (2005). Country Reports on avian influenza based on responses to the questionnaire. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of EU Member States, VLA Weybridge, 2004 pp 93-114.
- 8. ALEXANDER, D.J. & MANVELL, R.J. (2005). Comparative tests for antigen identification in different National Laboratories 2004. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of EU Member States, VLA Weybridge, 2004 pp 188-192.
- 9. ALEXANDER, D.J. (2005). Avian influenza. Abstracts of SGM 156th Meeting Heriot-Watt University Edinburgh
- 10.ALEXANDER, D.J. (2005). Avian influenza viruses and influenza in humans. Abstracts of OIE/FAO International Scientific Conference on Avian Influenza, Paris p22.
- 11.ALEXANDER, D.J. & MANVELL, R.J. (2005). OIE Reference Laboratory for Highly Pathogenic Avian Influenza, Annual Report for 2004. Annual Reports of OIE Reference Laboratories and Collaborating Centres 2004. OIE, Paris. pp.
- 12.I.H.BROWN (2005). Active surveillance for avian influenza in European Union member states. Proceedings of 2nd European Influenza Conference, Malta, 11-14 September 2005, p10.

- 13.S.C. ESSEN, I.H. BROWN, B. LONDT, M. KOYLASS, R. GARDNER. (2005). Viral genetic factors which influence transmission of influenza virus from avian to mammalian hosts. Proceedings of 2nd European Influenza Conference, Malta, 11-14 September 2005
- 14.I.H.BROWN, J.BANKS, R.J.MANVELL, S.C.ESSEN, M.SLOMKA, B.LONDT & D.J.ALEXANDER (2005). Recent epidemiology and ecology of influenza a viruses in avian species in Europe and the Middle East. Proceedings of OIE/FAO International Conference on Avian Influenza, Paris, 7-8 April 2005. Developments in Biologicals 124, 45-50.
- 15.I.H.BROWN (2005). Advances in molecular diagnostics for avian influenza. Proceedings of OIE/FAO International Conference on Avian Influenza, Paris, 7-8 April 2005. Developments in Biologicals 124, 93-98.
- 16. R.J.MANVELL, R. Horner, G. Akol, C.Abolnik, M. Romito, I.H.BROWN. (2005) Isolation of an influenza A virus subtype H5N2 from ostriches in South Africa in 2004. Full paper submitted for Proceedings of 3rd Ratite International Science Symposium, Madrid, Oct 2005
- 17.I.H.BROWN (2005). Epidemiology of swine influenza in Great Britain and emerging global issues. Pig Journal 56, 145-150.
- 18. ALEXANDER D.J. Avian influenza Chapter for OIE Manual of Standards for diagnostic tests and vaccines, OIE: Paris
- 19. Ilaria Capua, DENNIS J. ALEXANDER, Donald M. Broom, Véronique Jestin, Poul H. Jorgensen, Guus Koch, Stefano Marangon, Maurice Pensaert, Bjorn Olsen, Albert D.M.E. Osterhaus, Alejandro Schudel, Marion Wooldridge Animal health and welfare aspects of Avian Influenza Annex to *The EFSA Journal* (2005) 266, 1-21.

Estimated actual % resources: 1%

TECHNICAL REPORT FOR THE COMMUNITY REFERENCE LABORATORY FOR NEWCASTLE DISEASE, 2005

Ian H. Brown

Community Reference Laboratory for Newcastle disease Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

I. LEGAL FUNCTIONS AND DUTIES

The functions and duties are specified in Annex V of Council Directive 92/66/EEC (Official Journal of the European Communities No L 260 of 5.9.1992).

II. OBJECTIVES FOR THE PERIOD JANUARY – DECEMBER 2005

- Characterising viruses submitted to the Laboratory by Member States and third countries listed in Commission Decisions 95/233/EC and 94/85/EC. This will, at the request of the European Commission or the submitting National Laboratory or at the discretion of the Reference Laboratory, include:
 - a) Determining the intracerebral pathogenicity index (ICPI)
 - Determining basic amino acids composition adjacent to the cleavage site of the FO protein in the virus and phylogenetic analysis
 - c) Antigenic grouping of viruses
 - d) Limited phylogenetic analysis to assist in epidemiological investigations.

Work Plan: The number of viruses received will be dependent on the outbreaks occurring and those viruses submitted, as a guide the numbers received since 1988 are shown in Table 1.

1988	1989	1990	1991	1992	1993	1994	1995	1996
401	188	113	154	199	294	385	605	284
1997	1998	1999	2000	2001	2002	2003	2004	2005
227	285	357	704	316	333	464	426	387

The identification of all viruses received will be confirmed. All ND viruses will be subjected to antigenic grouping using monoclonal antibodies. ICPI tests will be done if not already assessed in the National Laboratories at the request of the NL or the Commission. Nucleotide sequencing and phylogenetic studies will be carried out on representative viruses.

% Resources: 70 %

WORK DONE: The viruses submitted in 2005 were characterised as shown in Table 2.

Table 2: Identification of viruses submitted to the reference laboratory in 2005

Virus identification	Number	
Influenza A viruses	128	
Paramyxoviruses	179	
APMV-1 (NDV)	145	
APMV-2	7	
APMV-3	2	
APMV-7	2	
Reoviruses	5	
Untyped	52	
Not viable	23	

In addition to identification and when requested by the submitting country, 43 intracerebral pathogenicity index tests were done on the submitted ND viruses to assess their virulence.

In addition to conventional typing of the viruses submitted a total of 83 APMV-1's were subjected to nucleotide sequencing of an area of the fusion protein gene and the amino acids at the signal sequence through the cleavage site was obtained for *in vitro* assessment of virulence and use in phylogenetic studies.

Estimated actual % resources: 69%

2. Maintain and distribute virus repository and reagents necessary for virus characterisation.

Work Plan: Maintenance of existing repository will continue. All viruses submitted to the CRL will be added to the repository after characterisation. Most viruses will be maintained in a frozen state, but selected, representative viruses will be freeze dried. Reagents such as polyclonal chicken sera, monoclonal antibodies and control antigens will be maintained at levels that previous demands have indicated to be necessary.

% Resources: 10 %

WORK DONE: The 179 APMV viruses received were added to the repository. Reagent stocks were maintained, at least at previous levels [Table 3] and during the year the following were supplied:

ANTIGENS 128 x 1.0ml of Newcastle disease (ND) antigen, 18 x 1.0ml of PMV-2 and 25 x 1.0ml of PMV-3 were supplied.

ANTISERA 62 x 0.5ml of ND antiserum, 6 x 0.5ml of PMV-2 antiserum and 15 x 0.5ml of PMV-3 antiserum were supplied.

363ml of APMV-1 (NDV) inactivated antigen, 40ml of APMV-1 antiserum; 50ml of APMV-2 antigen, 20ml of APMV-2 antiserum; 30ml of APMV-3 antigen, 7ml of APMV-4 antigen, 7ml of APMV-6 antiserum; 9ml of APMV-7 antigen, 18ml of APMV-7 antiserum; 17ml of APMV-8 antigen, 17ml of APMV-8 antiserum; 7ml of APMV-9 antigen, 16ml of APMV-9 antiserum. 13ml of NDV mAb 617/161; 16ml of NDV mAb 7D4; 4ml of NDV mAb U85

Estimated actual % resources: 8%

Table 3. Stocks of polyclonal chicken sera and virus antigens for HI tests held at the Community Reference Laboratory.

Type	Serum		Antigen	
	Quantity ^a	HI titre ^b	Quantity ^a	HA titre ^b
SPF	100	<1		
NDV	150	8	300	7
APMV-3	100	8	100	8

^a Number of freeze-dried ampoules containing 0.5 ml of serum or antigen at the indicated titre.

3. Prepare and distribute antisera, antigens and reagents for the inter-laboratory comparison tests.

Work Plan: Antisera and antigens to be used in the comparison tests will be prepared, freeze-dried and dispatched to the National Laboratories in time for results to be reported at the next annual meeting.

% Resources: 6 %

WORK DONE: Antigens were prepared and dispatched to EU National Laboratories and those of EFTA and accession countries [total 31 laboratories]

Estimated actual % resources: 6%

4. Analysis of results submitted by National Laboratories for the inter-laboratory comparison tests.

^b HI and HA titres are expressed as log₂. The SPF serum had an HI titre of <1 to each antigen.

Work Plan: As in previous years, results submitted by the National Laboratories will be analysed and presented at the annual meeting.

% Resources: 3 %

WORK DONE: Results were received, analysed and an oral presentation made at the Annual Meeting in 2005. A written report will appear in the proceedings.

Estimated actual % resources: 3%

5. Conduct work to evaluate reported problem areas in diagnosis.

Work Plan: Staff of the CRL will be available for consultation by National Laboratories, problem sera and other reagents will be received from National Laboratories for testing and evaluation.

% Resources: 2 %

WORK DONE: Staff of the CRL were consulted on an ad hoc basis.

Estimated actual % resources: 2%

6. Supporting by means of information and technical advice National Newcastle Disease Laboratories and the European Commission during epidemics.

Work Plan: Staff of the CRL will be available for consultation and forward all relevant information to the National Laboratories or the Commission, as appropriate.

% Resources: 2 %

WORK DONE: Staff of the CRL were consulted on numerous occasions by other National Laboratories, representatives of member states and the Commission. In addition staff from the CRL took part in the following consultations.

- 1. European Food Safety Authority Working group on captive birds (Dennis Alexander)
- 2. Defra ND Expert Committee (Dennis Alexander and Ian Brown)
- 3. EU mission to Romania on avian influenza with consequent advice for ND (Ruth Manvell)

Estimated actual % resources: 5%

7. Prepare programme and working documents for the Annual Meeting of National Newcastle Disease Laboratories.

Work Plan: The organisation of the Annual Meeting in collaboration with the Commission's representative will be done as in previous years.

% Resources: 2 %

WORK DONE: In collaboration with the Commission's representatives the Annual Meeting was organised and held at the Belgium NRL [Centre d'Etudes et de Recherches Vétérinaires et Agrochimiques, (CERVA), Brussels] in October 2005.

Estimated actual % resources: 2%

8. Collecting and editing of material for a report covering the annual meeting of National Newcastle Disease Laboratories.

Work Plan: Receive and collate submissions edit and produce report of 2004 proceedings before 2005 Annual meeting. Receive and collate submissions of 2005 meeting.

% Resources: 3 %

WORK DONE: Proceedings of the 2004 meeting were produced before the 2005 meeting.

Estimated actual % resources: 3%

9. Preparation and publications of articles and reports associated with above work.

Work Plan: Results obtained relating to the work of the CRL will be published in the proceedings of the Annual Meeting or, where appropriate and with the permission of the Commission, submitted to international journals as scientific publications.

% Resources: 2 %

WORK DONE: The following publications appeared in 2005 relating to the work of CRL for ND

 ALEXANDER, D.J. & MANVELL, R.J. (2005). Technical Report of the Community Reference Laboratory for Newcastle disease 2002. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of EU Member States, VLA Weybridge, 2004, pp 116-121.

- ALEXANDER, D.J. & MANVELL, R.J. (2005). Technical Report of the Community Reference Laboratory for avian influenza 2003. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of Countries of the European Union, VLA Weybridge, 2004 pp. 9-15.
- 3. ALEXANDER, D.J. & MANVELL, R.J. (2005). Country Reports on Newcastle disease based on responses to the questionnaire. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of EU Member States, VLA Weybridge, 2004 pp 122-132.
- ALEXANDER, D.J. & MANVELL, R.J. (2005). Comparative tests for antigen identification in different National Laboratories 2004. Proceedings of the Joint 10th Annual Meetings of the National Laboratories for Newcastle Disease and Avian Influenza of EU Member States, VLA Weybridge, 2004 pp 188-192.
- 5. ALEXANDER, D.J. & MANVELL, R.J. (2005). OIE Reference Laboratory for Newcastle Disease, Annual Report for 2004. Annual Reports of OIE Reference Laboratories and Collaborating Centres 2004. OIE, Paris. Pp
- 6. ALEXANDER, D.J. & MANVELL, R.J. (2005). OIE Reference Laboratory for Newcastle Disease, Annual Report for 2004. Annual Reports of OIE Reference Laboratories and Collaborating Centres 2004. OIE, Paris. pp.
- 7. ALEXANDER D.J Newcastle Disease and other avian paramyxoviruses. Chapter 30 for Handbook of American Association of Avian Pathologists
- 8. ALDOUS E. W. (2005) Molecular investigations into the pathogenicity and epidemiology of Newcastle disease virus. Ph.D. thesis, Reading University, UK.

Estimated actual % resources: 2%

REPORT FROM THE EUROPEAN COMMISSION

Ramunas Freigofas and Maria Pittman

Health and Consumer Protection Directorate General, European Commission, Brussels, Belgium

Presentation available on website:

http://ec.europa.eu/food/animal/diseases/controlmeasures/avian/crls_proceedings_en.htm

DEVELOPMENT OF A REAL-TIME RT-PCR FOR PATHOTYPING NEWCASTLE DISEASE VIRUS ISOLATES USING A NOVEL PROBE

Ian H. Brown

Community Reference Laboratory for Newcastle disease Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

Presentation available on website:

http://ec.europa.eu/food/animal/diseases/controlmeasures/avian/crls_proceedings_en.htm

PHYLOGENETIC ANALYSIS OF NEWCASTLE DISEASE VIRUSES ISOLATED IN WESTERN AFRICA IN EARLY 2006

I. Monne, P. De Benedictis, M. S. Beato, G. Cattoli, and I. Capua

Istituto Zooprofilattico Sperimentale delle Venezie, Virology Department, OIE/FAO and National Reference Laboratory for Newcastle disease and avian influenza, Viale dell'Università 10, 35020, Legnaro, Padua, Italy

Introduction and objectives

Newcastle disease (ND) is a viral infection of birds caused by an avian paramyxovirus serotype 1 (APMV-1). ND is a highly contagious disease and some strains of virus can cause severe disease in susceptible birds. Newcastle disease is present in vast areas worldwide and is considered to be endemic in Africa.

The majority of people in African countries live in rural areas and virtually every family rears poultry providing the cheapest source of animal protein in the form of eggs and meat. For this reason, poultry farming represents an important resource for the livelihood of villagers in the African continent. Throughout Africa, Newcastle disease is reported to be the most relevant cause of mortality in village chickens causing economic losses and reduced availability of proteins.

During early 2006, within the framework of avian influenza surveillance programmes and Technical Cooperation Programmes (TCP) through FAO, ND viruses were identified in samples collected in Niger, Mauritania and Nigeria from poultry with suspected HPAI.

Little is known about the genetic characteristics of the APMV-1 strains that are currently circulating in these countries and on their epidemiological implications. For this reason partial nucleotide sequences of the fusion protein gene of 13 African ND strains were analysed. The phylogenetic relationships between partial sequences of the fusion protein gene of these African ND viruses and gene sequences from different ND viruses available in the GenBank database were evaluated.

Materials and Methods

Viruses and nucleotide sequence analysis

13 Newcastle disease viruses isolated from poultry in African countries in 2006 were used in this study (7 strains from Mauritania, 5 from Niger and 1 from Nigeria). All viruses were grown in 9 to 10 day old embryonated fowls' SPF eggs. Subtype identification of the viruses was determined by standard haemagglutination inhibition test, as described in EU Council Directive 92/66/EEC. Pathogenicity of isolates were tested by the intracerebral pathogenicity index (ICPI) test and by sequencing of the fusion protein cleavage site.

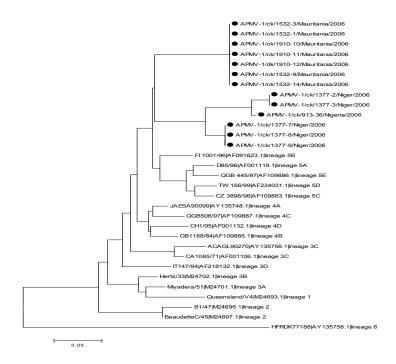
Viral RNA was extracted from the allantoic fluid using the High Pure™ RNA Isolation Kit (Roche). Amplification of partial segment of the fusion protein gene was carried out by one-step RT-PCR. The PCR products were purified with the High Pure™ PCR product purification kit (Roche) and then subjected to electrophoresis in a 2% agarose gel. PCR products were sequenced using an ABI PRISM BigDye Terminator V3.1 Cycle Sequencing kit (Applied Biosystems). The products of the reaction sequence were purified with an Autoseq™ G-50 kit (Amersham) and run on an ABI PRISM 3100 Avant Genetic Analyzer. Phylogenetic analysis was carried out using the Clustal W software in the MEGA 3 programme (2). Genotyping of Newcastle disease viruses was performed as described by Aldous et al., 2003 (1).

Results

The ICPI values and the deduced amino acid sequences of the fusion protein cleavage site showed velogenic nature of all of the African isolates used in this study. Phylogenetic analysis of the partial sequences of the fusion protein gene (gene F) of the African strains showed that they are all only distantly related to the F gene sequences of the APMV-1 available in GenBank (lower than 91%). Moreover the analysis highlighted that these isolates belong to the genetic lineage 5. In particular they are more similar to ND viruses of the sublineage 5b (1). All of the Mauritanian isolates showed very high percentage of homology to each other (100%), and were distantly related to the strains from Niger and Nigeria. Most of the ND strains from Niger were closely related to each other although two strains, APMV-1/ck/Niger/1377-2/06 and APMV-1/ck/Niger/1377-3/06, showed higher homology with the Nigerian strain than with the remaining strains from Niger.

Discussion

By phylogenetic analysis all the African APMV-1 isolates were placed in lineage 5 even if low homology was found between these strains and those published in GenBank. This phylogenetic distance is most probably related to the lack of genetic information on ND viruses currently circulating in Africa. Within lineage 5 the African isolates showed higher homology with strains belonging to sublineage 5b, which is composed also of isolates originating from South Africa. The importance of geographical origin in the evolution of these viruses is highlighted by the high percentage of homology that was found in the gene F sequences of the African strains originating from the same country. In particular this was observed for strains from Niger and for strains from Mauritania. A close relationship was found also between strains originating from neighbouring countries, namely Niger and Nigeria, suggesting transboundary spread. This study confirms that velogenic ND viruses are widely circulating in Niger, Nigeria and Mauritania despite vaccination programmes. Considering the role of rural and scavenging poultry in the livelihood of African villages, more data and investigations are needed to better understand the epidemiology of ND infection in Africa, in order to identify strategic actions to reduce the spread of this viral disease among poultry.


Acknowledgements

The authors wish to thank Dr. L. H. Lombin, Dr. S. Aboubakar, Dr. M. Fall, and their governments for kindly supplying the viruses studied in this analysis.

References

- 1. Aldous, E. W., Mynn, J.K., Banks, J., Alexander, D. J. (2003). A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. *Avian Pathology*, 32, 239-257.
- 2. Kumar, S., K. Tamura and M. Nei. *MEGA3*: Integrated software for molecular Evolutionary Analysis and sequence alignment. Briefings in Bioinformatics. 5 (2): 150-163. 2004.

Phylogenetic tree: the closed circles • represent viruses used in the present study.

INTER-LABORATORY COMPARATIVE TESTS USING HAEMAGGLUTINATION INHIBITION FOR 2006

Ruth Manvell

Community Reference Laboratory for Newcastle disease Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

Presentation available on website:

http://ec.europa.eu/food/animal/diseases/controlmeasures/avian/crls_proceedings_en.htm

EUROPEAN COMMISSION

HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL

Directorate E - Food Safety: plant health, animal health and welfare, international questions **E2 - Animal health and welfare, zootechnics**

SANCO/10466/2005 Working document

FOR AVIAN INFLUENZA AND NEWCASTLE DISEASE

Work programmes 2006

WORK PROGRAMME FOR THE COMMUNITY REFERENCE LABORATORY FOR AVIAN INFLUENZA, 2006

I. LEGAL FUNCTIONS AND DUTIES

The functions and duties are specified in Annex V of Council Directive 92/40/EEC (Official Journal of the Communities No L 167 of 22.6.1992).

II. OBJECTIVES FOR THE PERIOD JANUARY - DECEMBER 2006

- 1. Characterising viruses submitted to the Laboratory by Member States and third countries listed in Commission Decisions 95/233/EC and 94/85/EC. This will, at the request of the European Commission or the submitting National Laboratory or at the discretion of the Reference Laboratory, include:
 - a) Determining the intravenous pathogenicity index (IVPI)
 - b) Antigenic typing of viruses and both haemagglutinin and neuraminidase subtypes
 - c) Determining the amino acid sequence at the haemagglutinin cleavage site of H5 and H7 subtype viruses
 - d) Limited phylogenetic analysis to assist in epidemiological investigations.
- 2. Maintain and distribute virus repository and reagents necessary for virus characterisation.
- 3. Carry out work in relation to the surveys for avian influenza in poultry and wild birds implemented by Member States during 2005/06, revision of guidelines and production of final report.
- 4. Formally liaise with Public Health Laboratories to ensure rapid flow of information and viruses as appropriate.
- 5. Prepare and distribute antisera, antigens and reagents for the interlaboratory comparison tests.
- 6. Analysis of results submitted by National Laboratories for the interlaboratory comparison tests.
- 7. To assist MS on the use of PCR techniques and organise the interlaboratory comparison tests for PCR.
- 8. Conduct work to evaluate reported problem areas in diagnosis.
- 9. Supporting by means of information and technical advice National Avian Influenza Laboratories and the European Commission during epidemics.
- Maintain close awareness of developments in diagnostic methodology and report and advise, as relevant, to Annual Meeting of National Avian Influenza Laboratories.

Inter-laboratory comparative tests 2006

- 11. Prepare the programme and working documents for the Annual Meeting of National Avian Influenza Laboratories.
- 12. Collecting and editing of material for a report covering the Annual meeting of National Avian Influenza Laboratories.
- 13. Establish a genetic database of avian influenza viruses accessible to all national avian influenza laboratories.
- 14. In the light of the occurrence of influenza in birds and other animals keep under review the possible zoonotic impact arising from the risk of reassortment between influenza viruses.
- 15. Provide targeted training in the light of developments for new diagnostic methodology.
- 16. Preparation and publications of articles and reports associated with above work.

It is understood that the above mentioned objectives are not exclusive to other work of more immediate priority which may arise during the given period.

WORK PROGRAMME FOR THE COMMUNITY REFERENCE LABORATORY FOR NEWCASTLE DISEASE, 2006

I. LEGAL FUNCTIONS AND DUTIES

The functions and duties are specified in Annex V of Council Directive 92/66/EEC (Official Journal of the European Communities No L 260 of 5.9.1992).

II. OBJECTIVES FOR THE PERIOD JANUARY - DECEMBER 2006

- 1. Characterising viruses submitted to the Laboratory by Member States and third countries listed in Commission Decisions 95/233/EC and 94/85/EC. This will, at the request of the European Commission or the submitting National Laboratory or at the discretion of the Reference Laboratory, include:
 - a) Determining the intracerebral pathogenicity index (ICPI)
 - b) Determining basic amino acids composition adjacent to the cleavage site of the FO protein in the virus and phylogenetic analysis
 - c) Antigenic grouping of viruses
 - d) Limited phylogenetic analysis to assist in epidemiological investigations.
- 2. Maintain and distribute virus repository and reagents necessary for virus characterisation.
- 3. Prepare and distribute antisera, antigens and reagents for the interlaboratory comparison tests.

- 4. Analysis of results submitted by National Laboratories for the interlaboratory comparison tests.
- 5. To assist MS on the use of PCR techniques and organise the interlaboratory comparison tests for PCR.
- 6. Conduct work to evaluate reported problem areas in diagnosis.
- 7. Supporting by means of information and technical advice National Newcastle Disease Laboratories and the European Commission during epidemics.
- 8. Prepare programme and working documents for the Annual Meeting of National Newcastle Disease Laboratories.
- 9. Collecting and editing of material for a report covering the annual meeting of National Newcastle Disease Laboratories.
- 10. Provide targeted training in the light of developments for new diagnostic methodology.
- 11. Preparation and publications of articles and reports associated with above work.

It is understood that the above mentioned objectives are not exclusive to other work of more immediate priority which may arise during the given period.

EUROPEAN COMMISSION

HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL

Directorate E - Food Safety: plant health, animal health and welfare, international questions **E2 - Animal health and welfare, zootechnics**

SANCO/10662/2006 Working document

COMMUNITY REFERENCE LABORATORIES
FOR
AVIAN INFLUENZA
AND
NEWCASTLE DISEASE
Work programmes 2007

Presented at the 12th Joint Annual Meeting of avian influenza and Newcastle disease laboratories
16-18 October 2006, Uccle, Brussels

WORK PROGRAMME FOR THE COMMUNITY REFERENCE LABORATORY FOR AVIAN INFLUENZA, 2007

- I. Legal functions and duties
 - The functions and duties are specified in Annex VII of Council Directive 2005/94/EC (Official Journal of the European Union of 14.1.2006, No L 10 p.16.)
- II. Objectives for the period January December 2007
 - 1. Characterise viruses submitted to the Laboratory by Member States and third countries listed in Commission Decisions 95/233/EC and 94/85/EC. This will, at the request of the European Commission or the submitting National Laboratory or at the discretion of the Reference Laboratory, include:
 - a. Determining the intravenous pathogenicity index (IVPI)
 - b. Antigenic typing of viruses and both haemagglutinin and neuraminidase subtypes
 - c. Determining the amino acid sequence at the haemagglutinin cleavage site of H5 and H7 subtype viruses
 - d. Limited phylogenetic analysis to assist in epidemiological investigations.
 - 2. Maintain and distribute virus repository and reagents necessary for virus characterisation. Prepare and distribute standard antigens to MS's for use in annual poultry survey.
 - 3. Collate data from surveys for avian influenza in poultry and wild birds implemented by Member States during 2006/7; undertake consistency checks and raise queries with each Member State as required; compile reports on a quarterly and annual basis; undertake epidemiological analyses of these data; recommend improved data collection methods and implement agreed changes

- amongst Member States; establish and lead an Epidemiology Working Group to advise on the enhancement of wild bird surveillance and reporting.
- 4. Review and revise surveillance guidelines for poultry and wild birds as required.
- 5. Develop and implement IT reporting systems for AI surveillance data subject to approval from MS's.
- 6. Prepare and distribute antisera, antigens and reagents for the inter-laboratory conventional virological and serological comparison tests.
- 7. Assist MS on the use of PCR techniques and organise the inter-laboratory comparison tests for molecular detection and characterisation.
- 8. Analyse results submitted by National Laboratories for the inter-laboratory comparison tests.
- 9. Conduct work to evaluate reported problem areas in diagnosis.
- 10. Support by means of information and technical advice National Avian
- 11. Influenza Laboratories and the European Commission during epidemics.
- 12. Maintain close awareness of developments in diagnostic methodology and report and advise, as relevant, to the Annual Meeting of National Avian Influenza Laboratories.
- 13. Prepare the programme and working documents for the Annual Meeting of National Avian Influenza Laboratories.
- 14. Collect and edit material for a report covering the Annual meeting of National Avian Influenza Laboratories.
- 15. Ensure genetic data of avian influenza viruses is accessible to all national avian influenza laboratories.
- 16. Annually review and revise as required the EU AI diagnostic manual.
- 17. Provide targeted training in the light of developments for new diagnostic methodology.
- 18. In the light of the occurrence of influenza in birds and other animals keep under review the possible zoonotic impact arising from the risk of reassortment between influenza viruses.
- 19. Formally liaise with Public Health Laboratories to ensure rapid flow of information and viruses as appropriate.
- 20. Preparation and publications of articles and reports associated with above
- 21. It is understood that the above mentioned objectives are not exclusive to other work of more immediate priority which may arise during the given period.

WORK PROGRAMME FOR THE COMMUNITY REFERENCE LABORATORY FOR NEWCASTLE DISEASE, 2007

I. Legal functions and duties

The functions and duties are specified in Annex V of Council Directive 92/66/EEC (Official Journal of the European Communities No L 260 of 5.9.1992).

- II. Objectives for the period January December 2007
 - 1. Characterising viruses submitted to the Laboratory by Member States and third countries listed in Commission Decisions 95/233/EC and 94/85/EC. This will, at the request of the European Commission or the submitting National Laboratory or at the discretion of the Reference Laboratory, include:
 - a) Determining the intracerebral pathogenicity index (ICPI)
 - b) Determining basic amino acids composition adjacent to the cleavage site of the FO protein in the virus and phylogenetic analysis
 - c) Antigenic grouping of viruses
 - d) Limited phylogenetic analysis to assist in epidemiological investigations.
 - 2. Maintain and distribute virus repository and reagents necessary for virus characterisation.
 - 3. Prepare and distribute antisera, antigens and reagents for the interlaboratory comparison tests.
 - 4. Analyse results submitted by National Laboratories for the interlaboratory comparison tests.
 - 5. Assist MS on the use of PCR techniques and organise the interlaboratory comparison tests for PCR.
 - 6. Conduct work to evaluate reported problem areas in diagnosis.
 - Supporting by means of information and technical advice National Newcastle Disease Laboratories and the European Commission during epidemics.
 - 8. Prepare programme and working documents for the Annual Meeting of National Newcastle Disease Laboratories.
 - 9. Collecting and editing of material for a report covering the annual meeting of National Newcastle Disease Laboratories.
 - 10. Provide targeted training in the light of developments for new diagnostic methodology.
 - 11. Preparation and publications of articles and reports associated with above work.

It is understood that the above mentioned objectives are not exclusive to other work of more immediate priority which may arise during the given period.

CRL work programmes for 2006

COMMUNITY FINANCIAL ASSISTANCE PROVIDED TO CRLS IN ANIMAL HEALTH AND ZOOTECHNIC 2002 – 2006

CRL	BUDGET 2002	BUDGET 2003	BUDGET 2004	BUDGET 2005	BUDGET 2006
A : 1-61					
Avian Influenza	150.000	120.000	135.000	135.000	300.000
Newcastle Disease	60.000	60.000	65.000	50.000	70.000
Classical Swine	185.000	190.000	210.000	230.000	220.000
Fever					
Swine Vesicular	95.000	95.000	95.000	100.000	100.000
Disease					
African Swine		100.000	105.000	130.000	100.000
Fever					
African Horse	40.000	45.000	50.000	35.000	40.000
Sickness					
Fish Diseases	130.000	135.000	140.000	145.000	145.000
Diseases of bivalve	80.000	85.000	90.000	90.000	90.000
molluscs					
Rabies serology	130.000	130.000	150.000	150.000	165.000
Bluetongue	115.000	120.000	125.000	165.000	200.000
Assessment of	66.000	60.000	65.000	65.000	65.000
bovine breeding					
EURO TOTAL	1,051.000	1,140.000	1,230.000	1,295.000	1,495.000

EUROPEAN COMMISSION

HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL

Directorate D – Animal Health and Welfare

D1 - Animal Health and Standing Committees

SANCO/10555/2006 -Rev1

Updated list of names and addresses for AI and ND national reference laboratories in Member States, certain third countries and participants

LIST OF NATIONAL AVIAN INFLUENZA/NEWCASTLE DISEASE LABORATORIES

Austria: Österreichische Agentur für Gesundheit und Ernährungssicherheit

(AGES)

Veterinärmedizinische Untersuchungen Mödling

A-2340 Mödling; Robert Koch Gasse 17 General laboratory e-mail (if applicable):

Contact:

Eveline Wodak

Tel: + 43 (0) 50555 - 38230 Fax: + 43 (0) 50555 - 38309 Email: eveline.wodak@ages.at

Contact:

Sandra Revilla

Email: sandra.revilla-fernandez@ages.at

Belgium & Avian Virology & Immunology

Luxembourg: Centrum voor Onderzoek in Diergeneeskunde en Agrochemie (CODA)

Centre d'Etudes et de Recherches Vétérinaires et

Agrochimiques, (CERVA),

Groeselenbergstraat 99/99, Rue Groeselenberg

B-1180 Brussel/Bruxelles

General laboratory e-mail (if applicable):

Contact:

Dr Thierry van den Berg

Tel: + 32 2 379 06 30 Fax: + 32 2 379 13 37 Email: thvan@var.fgov.be

Cyprus: Veterinary Services

National Reference Laboratory for avian influenza and Newcastle

Disease 1417 Nicosia

General laboratory e-mail (if applicable):

Contact:

Dr. Kyriacos Georgiou

Tel: +357 2 2 805278 Fax: +357 2 2 332803

Participants Directory

Email: <u>Director@vs.moa.gov.cy</u> and <u>AnimalHealth@vs.moa.gov.cy</u>

Czech Republic:

National Reference Laboratory for Newcastle

Disease and Highly Pathogenic Avian Influenza

Statni veterinarni ustav Praha

Sidlistni 136/24

165 03 Praha 6 - Lysolaje

General laboratory e-mail: sekretariat@svupraha.cz

Head: Dr. Jirina Machova Tel: +420 2 51031111 Fax: +420 2 20920655

Email: jirina.machova@svupraha.cz

Contact:

Jitka Hornickova

Tel: +420 251 031 111 Fax: +420 220 920 655

Email: jitka.hornickova@svupraha.cz

Alexander Nagy

Tel: +420 251 031 111 Fax: +420 220 920 655

E-mail: alexander.nagy@svupraha.cz

Denmark: Danish Institute for Food and Veterinary Research

Hangøvej 2

DK-8200 Århus N.

General Laboratory Email: dfvf@dfvf.dk

Contact:

Dr Poul Jorgensen

Tel: +45 7234 6825 Fax: +45 7234 6901 Email: **phj@dfvf.dk**

Kurt Handberg

Tel: +45 7234 6859 Fax: +45 7234 6901 **Email: kha@dfvf.dk**

Estonia: Estonian Veterinary and Food Laboratory (EVFL)

Tallinn laboratory Väike-Paala 3 11415 Tallinn

General laboratory e-mail (if applicable): info@netlab.cc

Contact:

Ants Jauram DVM

Tel: +372 603 5815 Fax: +372 603 5811

Email:ants.jauram@vetlab.ee

EVFL

Kreutzwaldi 30 Tartu 51006 Estonia

Contact: Külli Must

<u>Tel: +372 7 386 101</u> <u>Fax: +372 7 386 102</u>

Email: kylli.must@vetlab.ee

Finland: Finnish Food Safety Authority (Evira)

Mustialankatu

FI-00790 Helsinki, Finland

Contact:

Anita Huovilainen Tel: +358 2077 24576 GSM: +358 50 544 1981

Email: anita.huovilainen@evira.fi

Christine Ek-Kommonen

Tel: +358 2077 2458 GSM: +358 50 514 3926 Fax: +358 2077 24363

Email: christine.ek-kommonen@evira.fi

France: Laboratoire d'Etudes de Recherches Avicoles et Porcines,

B.P. 53, F-22440 Ploufragan AFSSA Ploufragan (Agence

Française de Securité Sanitaire des Aliments)

General laboratory e-mail (if applicable):

Contact: Veronique Jestin and Jean-Paul Picault

Tel: + 33 2 96 01 62 22 Fax: +33 2 96 01 62 63

Email: v.jestin@ploufragan.afssa.fr jp.picault@ploufragan.afssa.fr

Germany: Friedrich-Loeffler-Institut (FLI)

Bundesforschungsinstitut für Tiergesundheit

Boddenblick 5a

D-17493 Greifswald - Insel Riems

3

Contact:

Timm Harder

Tel: +49 38351 7152 Fax: +49 38351 7275

Email: timm.harder@fli.bund.de

Elke Starick

Tel: +49 38351 7108 Fax: +49 38351 7219

E-mail: elke.starick@fli.bund.de

Christian Grund

Tel: +49 38351 70 Fax: +49 38351 7219

E-mail: christian.grund@fli.bund.de

Greece ND Laboratory: Centre of Athens Veterinary Institutions

25 Neapoleas Street

153 10 Agia paraskevie

Athens - Greece

Contact:

Vasiliki Rousi

Tel: + 30 210 6081921 and +30 210 6010903 ext. 103

Fax: + 30 210 6081921 E-mail: vrousi@yahoo.gr

Greece Al Laboratory: Centre of Thessalonica Veterinary Institutes

Institute for Infectious and Parasitic Diseases

Department of Avian Diseases

26th October Street 80,

546 27 Thessalonica, Greece

General laboratory e-mail: kkith@otenet.gr

Contact:

George Georgiades

Tel: +30 2310 56 60 51, +30 2310 56 60 66

Fax: +30 2310 55 20 23 Email: gkgeorgi@otenet.gr

Hungary: Central Veterinary Institute

> 1149 Budapest Tábornok u.2 Hungary **Contact:** Vilmos Palfi

Director: Dr. Lajos Tekes Tel: +36 1 460 6300

Fax: +36 1 252 5177

Email: palfiv@oai.hu , tekes@oai.hu

Adam Balint

Tel: +36 1 460 6374 Fax: +36 1 252 5177 E-mail: **balintad@oai.hu**

Ireland: Virology Division

Central Veterinary Research Laboratory

Department of Agriculture and Food Laboratories

Backweston Campus Staccumny Lane

Celbridge Co. Kildare Ireland

Contact: Pat Raleigh

Tel: (353-1) 615 7306 Fax: (353-1) 615 7253

Email: pat.raleigh@agriculture.gov.ie

Jean Mooney

Tel: Fax:

Email: jean.mooney@agriculture.gov.ie

Orla Flynn

Tel: (353-1) 615 7125

Fax:

Email: oral.flynn@agriculture.gov.ie

Italy & San Marino:

Istituto Zooprofilattico Sperimentale delle Venezie (IZS-VE)

V.le dell'Università, 10

I - 35020 Legnaro (Padova) - Italy

Ph: +39 049 8084211 - +39 049 8030380

Fax: +39 049 8830046 General laboratory e-mail: dirsan.izsv@izsvenezie.it

Contact:

Ilaria Capua

Tel: +39 049 8084 369 Fax: +39 049 8084 360

Email: icapua@izsvenezie.it

Giovanni Cattoli

Tel: +39 049 8084 384 Fax: +39 049 8084 360

Email: gcattoli@izsvenezie.it

Latvia: National Diagnostic Centre (NDC)

Lejupes str. 3 Riga, LV – 1076

Director: Dr. Rafaels Joffe

Tel: +371 7620526 Fax: +371 7620434

Email: ndcc@ndc.gov.lv

Deputy Director : leva Rodze Email : <u>ieva.rodze@ndc.gov.lv</u>

Contact:

Edvins Olsevskis

Tel: Fax:

Email: edvins.olsevskis@pvd.gov.lv

Sigita Rubene – Virology Department

Tel: +371 7620526 Fax: +371 7620434

Email: sigita.rubene@ndc.gov.lv

Dita Krastina - Serology Department

Tel: +371 7620604 Fax: +371 7620434

Email: dita.krastina@ndc.lv

Lithuania: National Veterinary Laboratory

J.Kairiukscio 10 LT-2021 Vilnius

General laboratory e-mail: nvl@vet.lt

Director: Jonas Milius Tel: +370 52780470 Fax: +370 52780471 Email: jmilius@vet.lt

Contact:

Jurate Buitkuviene - Head of Serology

Tel. Fax.

Email: jbuitkuviene@nvl.lt

Vaclovas Jurgelevicius

Tel. Fax.

Email: vjurgelevicius@yahoo.co.uk & vjurgelevicius@nvl.lt

Violeta Bumblauskiene

Tel. Fax.

Email: vbumblauskiene@nvl.lt

Malta: Only for Newcastle disease:

Food and Veterinary Division Laboratory Civil Abbatoir

Albertown – marsa

General laboratory e-mail (if applicable):

Contact:

Dr. Susan Chircop

Tel: +356.21225930 Fax: +356.21238105

Email: susan.chircop@gov.mt

Alessia Bonici

Email: alessia.bonnici@gov.mt

Netherlands: Central Institute for Animal Disease Control Lelystad

CIDC-Lelystad, Wageningen Ur

Houtribweg 39

NL - 8221 RA Lelystad

General laboratory e-mail info@cidc-lelystad.nl

Website: www.cidc-lelystad.wur.nl

Contact:
Guus Koch

Tel: +31 320 238 609 Fax: +31 320 238 668

Email: <u>guus.koch@wur.nl</u>

Jeanet VanderGoot

Tel: +31 320 238 800

Fax: +31 320 238 668

Email: <u>Jeanet.vandergoot@wur.nl</u>

Northern Ireland: Agrifood and Biosciences Institute (AFBI)

AFBI Headquarters Newforge Lane Belfast BT9 5PX

General laboratory e-mail: info@afbini.gov.uk

Contact:

Sam McCullough

Tel: +44 2890 525 630 Fax: +44 2890 525 749

Email: Sam.McCullough@afbini.gov.uk

David Graham

Email: david.graham@afbini.gov.uk

Poland: National Veterinary Research Institute (NVRI)

Poultry Disease Department

Al. Partyzantów 57 24-100 Puławy

General laboratory e-mail: **sekretariat@piwet.pulawy.pl**

Director: Dr. T. Wijaszka

Contact: Dr. hab. Zenon Minta Tel: +48 81 8863051 w. 217

Fax: +48 81 8862595

Email: zminta@piwet.pulawy.pl

Krzysztof Smietanka

Tel: +48 81 886 3051 Fax: +4881 886 25 95

Email: ksmiet@piwet.pulawy.pl

Portugal: Laboratório Nacional de Investigação Veterinária (LNIV)

Estrada de Benfica 701 P-1549-011 Lisboa

General laboratory e-mail (if applicable):

Contact:

Miguel Fevereiro

Tel: +351 21 711 5200/88 Fax: +351 21 711 5387

Email: miguel.fevereiro@Iniv.min-agricultura.pt

Teresa Faghula

Tel: +351 21 711 5200/88 Fax: +351 21 711 5387

Email: teresa.faghula@lniv.min-agricultura.pt

Slovak Republic: National Reference Laboratory for Avian Influenza and

Newcastle disease

State Veterinary Institute

Pod Drahami 918 960 86 Zvolen

Contact:

Miroslav Mojzis

Tel: +421 455320803,-4 Fax: +421 455332486 Email: mojzis@svuzv.sk

Dirbakova Zuzana

Tel: +421 455320803,-4 Fax: +421 455332486 Email: molbiol@svuzv.sk

Slovenia: National Veterinary Laboratory

Gerbiceva 60 1000 Ljubljana

General laboratory e-mail (if applicable): Director: Prof. Dr. Jelka Zabavnik Piano Email: jelka.zabavnik@vf.uni-lj.si

Contact:

Olga Zorman-Rojs

Tel: +386 1 4779 242 Fax: +386 1 4779 339

Email: olga.zorman-rojs@vf.uni-lj.si

Uros Krapez

Tel: +386 1 4779 247 Fax: +386 1 4779 339

Email: Uros. Krapez@vf.uni-lj.si

Spain: Laboratorio Central de Veterinaria (LCV)

Carretera de Algete, Km. 8

E-28110 Algete

Madrid

General laboratory e-mail: lcv@mapya.es

Contact:

Azucena Sanchez

Tel: +34 91 6290 300 Fax: +34 91 6290 598 Email: <u>azusan@mapya.es</u>

Montserrat Agüero García

Tel: +34 91 3479 275 Fax: +34 91 6290 598 Email: pcr.lcv@mapya.es

Sweden: Statens Veterinärmedicinska Anstalt, Uppsala (SVA)

SE-75189 Uppsala

General laboratory e-mail (if applicable): sva@sva.se

Anders Engvall

Email: anders.engvall@sva.se

Contact:

Gyorgy Czifra

Tel: +46 18 67 4000 Fax: +46 18 67 4467

Email: gyorgy.czifra@sva.se

Gunilla Hallgren

Tel: +46 18 67 4000 Fax: +46 18 67 4445

Email: gunilla.hallgren@sva.se

United Kingdom: Veterinary Laboratory Agency (VLA) Weybridge

Avian Virology Woodham Lane

New Haw, Addlestone, Surrey

KT15 3NB

General email of lab (if applicable):

Contact:

Ian Brown

Tel: +44 1932 357 339 Fax +44 1932 357 239

Email: i.h.brown@vla.defra.gsi.gov.uk

Ruth Manvell

Tel. +44 1932 357 736 Fax: +44 1932 357 856

Email: r.manvell@vla.defra.gsi.gov.uk

Dennis Alexander

Email: d.j.alexander@vla.defra.gsi.gov.uk

Alasdair Cook

Tel. +44 1932 357 977 Fax: +44 1932 349 983

Email: a.j.cook@vla.defra.gsi.gov.uk

Terry Stacy

Tel. +44 1932 357 272

Email: t.p.stacy@vla.defra.gsi.gov.uk

National Laboratories for avian influenza and Newcastle disease outside the European Union

BULGARIA

National Diagnostic and Research Medical Institute
 Pencho Slaveikov Blvd
 Sofia
 General laboratory e-mail: director@iterra.net

 National Reference Laboratory for AI and ND 190, Lomsko shose Blvd.
 Sofia 1231

Contact:

Dr. Gabriela Goujgoulova

Tel.: +359 2 9340 719 Fax: + 359 2 8341 004

E-mail: gvgouigoulova@abv.bg

Nadia Oreshkova

Tel: +359 29340719 or mobile +359 898 582 808

Fax: +359 28341004 Email: **nadeto h@abv.bg**

CROATIA

Croatian Veterinary Institute Poultry Centre Heinzelova 55 HR - 1000 Zagreb

General laboratory e-mail: czp-hvi@zg.t-com.hr

Contact:

Vladimir Savic

Tel.: +385 1 24 40 210 Mobile: +385 98 829 416 Fax: +385 1 24 41 396

E-mail: vsavichr@yahoo.com

MACEDONIA

Ministry of Agriculture, Forestry and Water Economy Leninova 2

MK - 1000 Skopje

General laboratory e-mail:

Contact:

Toni Kirandziski

Tel.: +389-2-311 22 05 Mobile: +389 70 243 986 Fax: +389-2-311 22 65

E-mail: tkirandziski@veterina.gov.mk

Ministry of Agriculture, Forestry, and Water Economy

Leninova 2

MK - 1000 Skopje

Dejan Runtevski

Tel.: +389-2 311 22 05 Fax: +389-2 311 22 65

E-mail: druntevski@veterina.gov.mk

NORWAY

National Veterinary Institute

P.O.Box 8156 Dep N-0033 Oslo General laboratory e-mail (if applicable)

Contact:

Jorun Tharaldsen

Tel: +47 2321 6410 Fax: +47 2321 6301

Email: jorun.tharaldsen@vetinst.no

Christine Monceyron-Jonassen

Tel: +47 2321 6409 Fax: +47 2321 6301

Email: christine.monceyron-jonassen@vetinst.no

Bruce David

Tel: +47 2321 6439 Fax: +47 2321 6301

Email: <u>bruce.david@vetinst.no</u>

ROMANIA

Institute for Diagnosis & Animal Health (IDAH)

Dr. Staicovici Str. 63

Sector 5 COD 050557 Bucharest

General laboratory e-mail: lcsv@dial.zokent.ro

Contact:

Onita Luliana

Tel: +400214101299

Fax: +400214113394

Email: onita.luliana:idah.ro

Handan Coste

Email: coste.handan@idah.ro

Mihai Turcito

Email: Turcitu.Mihai@idah.ro

RUSSIA

FGI ARRIAH, NRL for Avian Influenza 600901 Yur'evets

Vladimir Russia

General laboratory e-mail: afanaseva@arriah.ru

Contact:

Viktor Irza

Tel:

Fax: +7 4922 26 18 67 Fax: +7 4922 26 38 77 E-mail: irza@arriah.ru

Manin Timofey Borisovich

600901 Yur'evets

Vladimir Russia

Tel: +7 4922 261765 (+337) E-mail: <u>timmanin@hotmail.com</u>

SWITZERLAND:

Institute of Veterinary Bacteriology
Department of Poultry Diseases
Winterthurerstrasse 270
CH-8057 Zurich

General laboratory e-mail (if applicable):

Contact:

Richard Hoop

Tel. +41 44 63 58604 Fax: +41 44 63 58912

Email: rhoop@vetbakt.unizh.ch

TURKEY

1) Ministry of Agriculture and Rural Affairs Bornova Veterinary Control and Research Institute Osman Kibar Meydani, Ege Universitesi Kavsagi 2 TR-35010 Izmir

General laboratory e-mail: borvetar@borvetar.gov.tr

Contact:

Fethiye Coven

Tel: +90 - 232 388 00 10 Mobile: +90 532 505 7019 Fax: +90 - 232 388 50 52

E-mail: covenfethiye@yahoo.com

2) Konya Veterinary Control and Research Instýtute Veteriner Kontrol ve Arastirma Enstitusu TR - 42080 Konya

Contact:

Gulsen Orhan

Tel.: +90-332-322 47 33 Mobile: +90-537 680 7725 Fax: +90-332-320 37 98

E-mail: gulsenorhan@yahoo.com

3) Veterinary Control and Research Institute Poultry Disease Diagnosis Laboratory Bornova, Izmir 35 010

UKRAINE

Ministry of Agricultural Policy
 Donetska Str.
 Kiev

Contact:

Artur Abramov

Tel.: +380-44 243 37 55 Fax: +380-44 243 37 55

E-mail: artur@centrlabvet.com.ua

2) Ministry of Agriculture30 Donetska Str.UA - Kiev

Contact:

Oleksandr Khil

Tel.: +380-44 243 37 55 Fax: +380-44 243 37 55 E-mail: grasa@meta.ua

Other participants:

Names, Institution, Address, Tel/Fax, e-mail address

BAUMER, Annette

Institute of Virology and Immunoprophylaxis (IVI) Sensemattstrasse 293 CH-3147 Mittelhaeusern

Tel: +41 (0)31 848 92 11 Fax: +41 (0)31 848 92 22

E-mail: anette.baumer@ivi.admin.ch

BEATO, Maria Serena

Istituto Zooprofilattico Sperimentale delle Venezie (IZS-VE)

Viale dell'Universita 10 I-35020-Legnaro – Padova Tel: +39 (0) 49 8084376

Fax: +39 (0) 49 8084360

E-mail: msbeato@izsvenezie.it

COOK, Alasdair

Woodham Lane New Haw, Addlestone, Surrey U.K. - KT15 3NB

Tel: Fax:

E-mail: a.j.cook@vla.defra.gsi.gov.uk

DUCATEZ, Mariette

Institute of Immunology Laboratoire National de Santé 20 A Rue Auguste Lumière L – 1950 Luxembourg

Tel: +352 29 13 94 Fax: +352 49 06 86

E-mail: mariette.ducatez@lns.etat.lu

FOUCHIER, Ron

National Influenza Centrum Dept. Virology, Erasmus MC Visitors address: Dr.Molewaterplein 50 NL - 3015 GE Rotterdam Postaddress:

Postbus 1738

NL - 3000 DR Rotterdam Tel: +31 10 408 8066 Fax: +31 10 408 9485

E-mail: r.fouchier@erasmusmc.nl

HOUDART, Philippe

(Belgian Food Safety Agency)

Institute Tel. Fax.

E-mail: philippe.houdart@favv.be

LENTNER, Reinhard

DG Environment, Unit B2 European Commission Tel: +32 2 29 62234

E-mail: reinhard.lentner@ec.europa.eu

LOSCH, Serge

State laboratory of Veterinary Medicine 54, av. Gast. Diderich

L-1420 Luxembourg Tel: +352 478 2544

E-mail: Serge.Losch@asv.etat.lu

MEIJER, Adam

European Influenza Surveillance Scheme (EISS)

Netherlands Institute for Health Services Research (NIVEL)

PO Box 1568

NL - 3500 BN Utrecht Tel: +31 30 27 29 857 Fax: +31 30 27 29 729 Email: a.meijer@nivel.nl

MONNE, Isabella

Istituto Zooprofilattico Sperimentale delle Venezie (IZS-VE)

Via Romea 14/A

I-35020-Legnaro – Padova

Tel: +39 049 8084 381 Fax: +39 049 8084 360

E-mail: imonne@izsvenezie.it

MULLER, Claude

Institute of Immunology WHO Collaborating Center for Measles European Reference Laboratory for Measles and Rubella National Reference Laboratory for Measles and Rubella

Laboratoire National de Santé 20A, rue Auguste Lumiere L-1950 Luxembourg

Tel: +352-490604 Fax: + 352-490686

Email: claude.muller@lns.etat.lu

POTTIE, Erik

Belgian Ministry

Institute Address Tel.

Fax.

E-mail: erik.pottie@health.fgov.be

Ribo, Oriol

EFSA – Animal Health and Welfare Panel

Largo N. Palli 5/A I-43100 Parma

Tel: +39 0521 036111 Fax: +39 0521 036110

E-mail: oriol.ribo@efsa.europa.eu

SLOMKA, Marek

Institute Address Tel.

E-mail: m.slomka@vla.defra.gsi.gov.uk

STACY, Terry

Woodham Lane New Haw, Addlestone, Surrey U.K. - KT15 3NB Tel. +44 1932 357272

Fax.

E-mail: t.p.stacy@vla.defra.gsi.gov.uk

STAUBACH, Christoph

Bundesforschungsanstalt für Viruskrankheiten der Tiere Anstaltsteil Riems (Friedrich- Löffler-Institut) BFAV Insel Riems Boddenblick 5a D-17493 Insel Riems

Tel. Fax.

Email: christoph.staubach@fli.bund.de

THUER, Barbara

Institute of Virology and Immunoprophylaxis (IVI) Sensemattstrasse 293 CH-3147 Mittelhaeusern Phone +41 (0)31 848 92 51 Fax +41 (0)31 848 92 22 E-mail: barbara.thuer@ivi.admin.ch

VANGELUWE, Didier

Royal Belgian Institute of Natural Sciences 29 rue Vautier B – 1000 Bruxelles

Tel: +32 2 627 4355 Fax: +32 2 649 4825

E-mail: didier.vangeluwe@naturalsciences.be

VAN REETH, Kristien

Faculty of Veterinary Medicine Ghent University Salisburylaan 133 B-9820 Merelbeke

Tel: +32 (0)9 264 73 69 Fax: +32 (0)9 264 74 95

E-mail: kristien.vanreetg@ugent.be