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Abstract 

Using mathematical modelling, the EFSA GMO Panel has previously quantified the risk to non-target 

(NT) Lepidoptera of conservation concern, potentially occurring within protected habitats, associated 
with the ingestion of Bt-maize pollen deposited on their host plants. To reduce the estimated larval 

mortality to a negligible level, an isolation distance of 20 and 30 m was recommended between 

protected habitats and the nearest fields of maize MON 810/Bt11 and 1507, respectively. Here, the 
EFSA GMO Panel refines its model predictions, accounting for newly reported information on maize 

pollen deposition over long distances. For its calculations, the EFSA GMO Panel considered three 
exposure scenarios at a range of isolation distances, at two protection levels and for a range of 

lepidopteran species, including hypothetical ones, with a wide spectrum of sensitivities to Bt toxins. An 

analysis of various sources of uncertainties affecting the exposure of NT Lepidoptera to Bt-maize 
pollen was conducted, in order to provide quantitative estimates of realistic exposure levels. The EFSA 

GMO Panel therefore provides risk managers with a tool to estimate and mitigate the risk for NT 
Lepidoptera of conservation concern. In contrast to its previous outcomes obtained for unrealistically 

large levels of exposure that would not be expected in practice, the EFSA GMO Panel reports here 
mortality estimates for a more realistic level of exposure. The EFSA GMO Panel concludes that its 

previous recommendation for a 20 m isolation distance around protected habitats, within which maize 

MON810/Bt11 should not be cultivated, remains valid. New calculations show that the previously 
recommended isolation distance of 30 m from the nearest maize 1507 field would still protect NT 

Lepidoptera with known levels of sensitivity, including the ‘highly-sensitive’ Plutella xylostella. Should 
hypothetical species with greater sensitivities exist, larger isolation distances would be needed to 

ensure the desired level of protection. 
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Summary 

In this scientific opinion, the Panel on Genetically Modified Organisms of the European Food Safety 
Authority (EFSA GMO Panel) updates its previous risk management recommendations on limiting the 

exposure of non-target (NT) Lepidoptera of conservation concern, potentially occurring in protected 
habitats, as defined under Directive 2004/35/EC, to maize MON 810, Bt11 and 1507 pollen. Using the 

mathematical model developed by Perry et al. (2010, 2011, 2012, 2013), the EFSA GMO Panel 
previously quantified the risk to NT Lepidoptera associated with the ingestion of Bt-maize pollen 

deposited on their host plants. To reduce the estimated larval mortality to a negligible level, an 

isolation distance of 20 and 30 m was recommended between protected habitats and the nearest 
fields of maize MON 810/Bt11 and 1507, respectively. 

New information provided by Hofmann et al. (2014) led the EFSA GMO Panel to reconsider the level of 
exposure of NT lepidopteran larvae to Bt-maize pollen, in particular over long distances for larvae in 

protected habitats, and thus to refine the outcomes of the modelling exercise performed by Perry et 

al. (2010, 2011, 2012, 2013). 

The EFSA GMO Panel ran new simulations with exactly the same Bt-related mortality model as used 

by Perry et al. (2010, 2011, 2012, 2013) but assuming the dose–distance relationship defined by 
Hofmann et al. (2014). The EFSA GMO Panel considered different exposure scenarios and the 

uncertainties pertaining to the structure of the Perry et al. model, and/or contributing to the variability 
in exposure of NT Lepidoptera to Bt-maize pollen. In this scientific opinion, the percentage of NT 

lepidopteran species, for which the predicted mortality is less than a defined threshold protection level 

(e.g. 0.5 % or 1 %), is given for the three different exposure scenarios and different isolation 
distances from sources of Bt-maize pollen. 

The EFSA GMO Panel emphasises that, in its previous scientific opinions (EFSA GMO Panel, 2011a, b, 
2012a–e), larval mortality was estimated with regard to an unrealistically large level of exposure, as 

no allowance was made for effects that are known to reduce the effective exposure to Bt-maize 

pollen, such as the proportion of maize pollen that comes from non-Bt-maize varieties. Despite the 
fact that mortality estimates may have been overestimated for the dose–distance relationship used by 

EFSA (EFSA GMO Panel, 2011a, b, 2012d, e), no such allowances were necessary in these previous 
opinions, because the isolation distances commensurate with those mortality estimates were, in any 

case, relatively small. With the different dose–distance relationships studied here, it is necessary to 

adopt more realistic levels of exposure and hence isolation distances that are commensurate with 
appropriate mortality estimates. An uncertainty analysis of several different factors affecting the 

exposure of NT Lepidoptera to Bt-maize pollen is used to provide quantitative estimates of a more 
appropriate exposure level.  

The EFSA GMO Panel concludes that the new information provided by Hofmann et al. (2014) does not 
impact greatly on the mortality estimates for NT Lepidoptera of conservation concern, occurring within 

protected habitats and potentially exposed to maize MON 810/Bt11 pollen. Under the most realistic 

and even conservative scenarios, the estimated mortality for all species considered is always less than 
0.5 % for the previously recommended isolation distance of 20 m. Therefore, the previous EFSA GMO 

Panel recommendation for isolation distances around protected habitats, within which maize MON 
810/Bt11 should not be cultivated, remains valid (EFSA GMO Panel, 2011b). 

However, new calculations show that the previously recommended isolation distance of 30 m from the 

nearest field of maize 1507 would still protect NT Lepidoptera with known levels of sensitivity, 
including the ‘highly-sensitive’ Plutella xylostella (EFSA GMO Panel, 2011a). Should hypothetical 

species with greater sensitivities exist, larger isolation distances would be needed to ensure the 
desired level of protection. 

The EFSA GMO Panel provides risk managers with a tool to estimate and mitigate the risk for NT 
Lepidoptera of conservation concern, considering the above-mentioned three scenarios at a range of 

isolation distances, at two protection levels and for a range of lepidopteran species with a wide 

spectrum of sensitivities to Bt toxins, including hypothetical species not yet assessed. This will allow 
risk managers to select the most appropriate risk management measures (i.e. isolation distances) that 

are proportionate to the level of risk identified according to appropriate protection goals. 
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1. Introduction 

Genetically modified (GM) maize events MON 810, Bt11 and 1507 (hereafter referred to as ‘Bt-maize’) 
have been developed to be resistant to certain lepidopteran target pests, and in particular the 

European corn borer (ECB), Ostrinia nubilalis (Hübner), and the Mediterranean corn borer (MCB), 
Sesamia nonagrioides (Lefebvre). 

The Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA GMO 
Panel) assessed whether or not the insecticidal Cry1Ab and Cry1F proteins expressed in maize MON 

810/Bt111 and maize 1507 pollen, deposited on the leaves of host plants within or in the surroundings 

of Bt-maize fields, affect sensitive non-target (NT) lepidopteran larvae, including those of conservation 
concern found in protected natural habitats, as defined in Directive 2004/35/EC2 (hereafter referred to 

as ‘protected habitats’). 

In previous scientific opinions, the EFSA GMO Panel employed a mathematical model (Perry et al., 

2011, 2012, 2013) to estimate the larval mortality of known or hypothetical NT lepidopteran species 

with a range of sensitivities exposed to Bt-maize pollen deposited on the leaves of their host plants 
(EFSA GMO Panel, 2011a, b, 2012d, e). In its 2011 scientific opinions (EFSA GMO Panel, 2011a, b), 

the EFSA GMO Panel noted the variability in between-species sensitivity to the insecticidal proteins in 
Bt-maize pollen and defined five categories of species sensitivity, based on data of Wolt et al. (2005). 

Whilst the EFSA GMO Panel concluded that certain lepidopteran species (i.e. those in the ‘very highly’ 
to ‘extremely’ sensitive categories) can be at risk when ingesting a certain amount of Bt-maize pollen 

(EFSA GMO Panel, 2011a, b), it emphasised that no actual species had yet been recorded with that 

degree of sensitivity and that the species at risk were therefore hypothetical. Consideration of these 
two hypothetical categories could be disproportionate because in practice there may well be no actual 

species with that degree of sensitivity. Despite this, the EFSA GMO Panel has taken this worst-case 
approach to ensure inclusion of all potential species sensitivities within the modelling exercise, in order 

to study the possible implications for all lepidopteran species of exposure to Bt-maize pollen (EFSA 

GMO Panel, 2011a, b, 2012d, e).  

Based on the model predictions, the EFSA GMO Panel provided risk managers with a set of risk 

mitigation measures (e.g. non-Bt-maize border rows around Bt-maize field, isolation distances from 
protected habitats to nearest Bt-maize field) to limit the exposure of known and hypothetical sensitive 

NT lepidopteran larvae. These mitigation measures vary, depending on the sensitivity of the 

lepidopteran species and its level of exposure to Bt-maize pollen (EFSA, 2005a, b, 2009; EFSA GMO 
Panel 2011a, b, 2012d, e). 

In this scientific opinion, the EFSA GMO Panel assesses the consequences of the new information 
reported by Hofmann et al. (2014) on its previous risk assessment conclusions and risk management 

recommendations for Bt-maize (EFSA, 2005a, b, 2009; EFSA GMO Panel 2011a, b, 2012a–e). 
Particular attention is paid to the comments by Hofmann et al. (2014) on the isolation distances 

previously recommended by the EFSA GMO Panel to reduce exposure of sensitive NT lepidopteran 

larvae of conservation concern potentially occurring in protected habitats. These isolation distances 
around protected habitats, within which Bt-maize should not be cultivated, are reviewed here by the 

EFSA GMO Panel. 

1.1. Background and Terms of Reference as provided by the requestor 

In 2005, the EFSA GMO Panel issued scientific opinions on both maize 1507 and Bt11 for cultivation in 

the European Union (EU) (EFSA, 2005a, b). In 2009, the EFSA GMO Panel gave its scientific advice on 
maize MON 810 in the context of the renewal of the authorisation for its continued marketing, 

including cultivation (EFSA, 2009). 

                                                           
1 Data on the biological activity of the Cry1Ab protein variant of maize Bt11 and maize MON 810 against sensitive lepidopteran 

species confirm that both variants are biologically equivalent. In addition, the reported ranges in the levels of the Cry1Ab 
protein expressed in maize Bt11 pollen were shown to be similar to those in maize MON 810 pollen. Based on the sensitivity 
and protein expression data, the EFSA GMO Panel considers that the mortality estimates calculated by Perry et al. (2010) for 
maize MON 810 apply equally to maize Bt11 (EFSA, 2011b). 

2 Directive 2004/35/CE of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to 
the prevention and remedying of environmental damage. OJ L 143, 30.4.2004, p. 56–75. 
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Over the last four years, the EFSA GMO Panel delivered, upon requests of the European Commission 
and on its own initiative, scientific outputs supplementing the initial environmental risk assessment 

(ERA) conclusions of maize MON 810, Bt11 and 1507, and, when needed, clarifying the initial set of 

risk management recommendations (EFSA GMO Panel, 2011a,b, 2012a–e). Overall, EFSA and its GMO 
Panel were aiming at completing a comprehensive and up-to-date ERA of these maize events in the 

light of the most recent and relevant scientific literature. 

As part of the pre-market ERA of Bt-maize MON 810, Bt11 and 1507, the EFSA GMO Panel assessed 

the possible adverse effects that these maize events may cause to non-target organisms (NTOs), 

including NT Lepidoptera, in accordance with its guidance document on the ERA of GM plants (EFSA 
GMO Panel, 2010). Possible effects on NT Lepidoptera were specifically evaluated due to the known 

hazard represented by Cry proteins to this NT group. Depending on their sensitivity to the insecticidal 
Cry proteins expressed in Bt-maize and the amount of ingested pollen, NT Lepidoptera may be at risk 

following the ingestion of Bt-maize pollen deposited on the leaves of host-plants within and in the 
surroundings of Bt-maize fields. 

The EFSA GMO Panel used the mathematical model developed by Perry et al. (2010, 2011, 2012, 

2013) to simulate and predict potential adverse effects resulting from the exposure of NT Lepidoptera 
to pollen from maize MON 810, Bt11 or 1507 under representative EU cultivation conditions. Based on 

the outcomes of the modelling exercise, the EFSA GMO Panel recommended mitigation measures (e.g. 
non-Bt-maize border rows of various strip widths) around the GM maize fields, in order to reduce the 

exposure of sensitive NT lepidopteran species to Bt-maize pollen deposited on the leaves of host 

plants in agricultural landscapes (EFSA GMO Panel 2011a, b, 2012d, e). 

In the case of lepidopteran species of conservation concern, which potentially occur in protected 

habitats, an isolation distance of 20 and 30 m was recommended from the nearest fields of maize 
MON 810/Bt11 and 1507, respectively, so as to reduce their estimated mortality to negligible levels 

(EFSA GMO Panel 2011a, b, 2012d, e). 

The EFSA GMO Panel recently identified a new scientific publication by Hofmann et al. (2014), which 

provided a comprehensive dataset on the dispersal of maize pollen over long distances. The data led 

the EFSA GMO Panel to reconsider the level of exposure of NT lepidopteran larvae to Bt-maize pollen, 
in particular over long distances, and thus to refine the outcomes of the modelling exercise performed 

by Perry et al. (2010, 2011, 2012, 2013). 

The EFSA GMO Panel was therefore requested to update its previous risk management measures for 

reducing exposure to maize MON 810, Bt11 or 1507 pollen of NT Lepidoptera of conservation concern 

in protected habitats, in the light of the recent findings by Hofmann et al. (2014). 

2. Data and methodologies 

2.1. Data 

In delivering this scientific opinion, the EFSA GMO Panel took into account the new information 
reported in the scientific publication by Hofmann et al. (2014). 

2.2. Methodologies 

According to the EFSA guidance document on the ERA of GM plants (EFSA GMO Panel, 2010), the 

assessment of possible adverse effects that the cultivation of Bt-maize active against lepidopteran 

pests might have on NT Lepidoptera constituted a prominent part of the ERA and led to the 
development of a mathematical model. The model was designed to simulate and predict larval 

mortality, resulting from the exposure of NT Lepidoptera to pollen from Bt-maize under representative 
EU cultivation conditions. Details on the structure and parameters of the Bt-related mortality model 

are given in Perry et al. (2010, 2011, 2012, 2013). 
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3. Assessment 

3.1. Previous environmental risk assessment conclusions and risk 
management recommendations for Bt-maize events 

By using a 14-parameter deterministic mathematical simulation model (Perry et al., 2011, 2012, 

2013), the EFSA GMO Panel previously estimated the larval mortality of known and hypothetical NT 
lepidopteran species with a range of sensitivities3 exposed to Bt-maize pollen deposited on the leaves 

of their host plants (EFSA GMO Panel, 2011a, b, 2012d, e). Based on the integration of a mortality–
dose relationship from the laboratory with a dose–distance relationship from the field, the model 

enabled the calculation of larval mortalities at two scales; firstly, spatially within the crop and its 
immediate margins, and temporally within the period of pollen shed (smaller scales), and secondly, 

after averaging over a landscape and a growing season (larger scales). The EFSA GMO Panel recalls 

that, at each stage in the Perry et al. (2011, 2012, 2013) model development, ‘worst-case’ scenarios 
have been modelled, in which any assumptions tend towards overestimation instead of 

underestimation of mortality (EFSA GMO Panel, 2011a, b) (see also Section 3.2). For a full description 
of the mathematical model, we refer to Section 2.3.5.2 of the EFSA GMO Panel opinion (2011a) and 

Perry et al. (2010, 2011, 2012, 2013). 

The EFSA GMO Panel provided risk managers with recommendations for two categories of NT 
Lepidoptera (e.g. EFSA GMO Panel 2012d, e): species occurring within maize fields and their margins, 

and species of conservation concern occurring within protected habitats. For the first category, to 
reflect a typical agricultural landscape, larger scale mortality was calculated (EFSA GMO Panel, 2011a, 

b, 2012d, e). For the second category, the EFSA GMO Panel favoured smaller scale estimates to 
provide thresholds to derive risk management recommendations (EFSA GMO Panel, 2012d), for the 

following two reasons: 

1) In EU farming areas, many protected habitats are isolated and relatively small, contain 
specific food plants for Lepidoptera and often lack nearby contiguous similar habitat from 

which colonisation or recovery would allow the replenishment of a population suffering decline 
through mortality (see Sherratt and Jepson, 1993). 

2) Species of conservation concern often have relatively small populations that are not 

widespread; such vulnerable populations are less able to tolerate mortality and may become 
extinct in the vicinity. Risk managers might operationalise protection goals for such species by 

employing lower thresholds for mortality than for more common species occurring in maize 
fields and margins that are more widespread throughout the maize arable ecosystem. 

The EFSA GMO Panel considered the efficacy of a set of mitigation measures to reduce the exposure 

and thus the mortality of certain sensitive lepidopteran larvae to Bt-maize pollen. The EFSA GMO 
Panel recommended that risk mitigation measures (e.g. non-Bt-maize border rows) are only required 

in situations where certain NT Lepidoptera ‘extremely sensitive’ to Cry1Ab or ‘highly sensitive’ to Cry1F 
might be at risk in agricultural landscapes where arable maize fields or their direct field margins 

contain their host plants (EFSA GMO Panel, 2011a, b). For the protected habitats where lepidopteran 
species of conservation concern are present, isolation distances4 of 20 and 30 metres were 

recommended from the nearest fields of maize MON 810/Bt11 and 1507, respectively, to reduce the 

estimated mortality of lepidopteran larvae to a negligible level5 (EFSA GMO Panel, 2011a, b). 

                                                           
3 See Table 2 in EFSA GMO Panel, 2011a, reporting the sensitivity of first instars of various lepidopteran species (expressed as 

LC50 values in units of maize 1507 pollen grains/cm2) to the Cry1F protein, together with corresponding values for 
hypothetical species (A–E, representing a wider range of sensitivities corresponding to five defined categories).  

4 It is well-documented that larvae of a range of Lepidoptera can be affected by the Cry1F protein with a spectrum of 
sensitivity which is quantitatively different from the Cry1Ab protein. The 32 ng/mg dry weight of Cry1F protein in pollen of 
maize 1507 is about 350-fold higher than the Cry1Ab protein content in maize MON 810/Bt11 pollen (see Section 2.3.5.1 of 
EFSA GMO Panel, 2011a). Since maize 1507 could then pose a greater risk for NT Lepidoptera than maize MON 810/Bt11, 
different isolation distances are recommended.   

5 In EFSA GMO Panel, 2011a: the EFSA GMO Panel considers that a distance of 30 m is sufficient to reduce the mortality to a 
negligible level below 0.5 %, even for extremely sensitive species. In EFSA GMO Panel, 2011b: the EFSA GMO Panel considers 
that a distance of 20 m is sufficient to reduce the mortality to a negligible level below 0.2 % in the margins of the protected 
areas, even for extremely sensitive species. 
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The EFSA GMO Panel emphasises that, in its previous scientific opinions (EFSA GMO Panel, 2011a, b, 
2012d, e), larval mortality was estimated with regard to an unrealistically large level of exposure, as 

no allowance was made for effects that are known to reduce the effective exposure to Bt-maize 

pollen, such as the proportion of maize pollen that comes from non-Bt-maize varieties. Despite the 
fact that mortality estimates may have been overestimated for the dose–distance relationship used by 

EFSA in these opinions (EFSA GMO Panel, 2011a, b, 2012d, e), no such allowances were necessary in 
these previous opinions, because the isolation distances commensurate with those mortality estimates 

were, in any case, relatively small. With the different dose–distance relationship studied here, it is 

necessary to adopt more realistic levels of exposure and hence isolation distances that are 
commensurate with appropriate mortality estimates. An uncertainty analysis of several different 

factors affecting the exposure of NT Lepidoptera to Bt-maize pollen is presented in Section 3.3 and 
this helps to provides quantitative estimates of a more appropriate exposure level. 

The EFSA GMO Panel is of the opinion that, in contrast to a field that can be looked at as either a 
whole at a particular time or part of a landscape over a season, a protected habitat is usually 

considered a spatially ‘self-contained’ area per se. Since the present scientific opinion addresses only 

protected habitats where NT lepidopteran species of conservation concern might be found, the EFSA 
GMO Panel refers here to estimated mortality without further distinction between larger or smaller 

scale mortality estimates as reported previously (e.g. EFSA GMO Panel, 2011a, b). Furthermore, since 
the categories of sensitivity are somewhat arbitrary, results are given in this scientific opinion as the 

percentage of species for which the predicted mortality is less than a defined threshold protection 

level. The thresholds chosen as examples are 1 % predicted mortality (i.e. a maximum tolerable 
mortality of 1 in every 100 individual larvae) and 0.5 % predicted mortality (i.e. a maximum tolerable 

mortality of 1 in 200 individual larvae). As was emphasised explicitly by EFSA (EFSA GMO Panel, 
2012e), any specific protection level used here for illustration by the EFSA GMO Panel is intended as 

an example only. It is reiterated here that the establishing of criteria to define the need for specific 
mitigation measures is the task of risk managers; any threshold applied must, by necessity, be 

arbitrary and should be subject to amendment according to the protection goals in operation within 

the EU (see Section 3.6). 

3.2. Summary and relevance of recent scientific data for the 
environmental risk assessment of Bt-maize events 

Recently, the EFSA GMO Panel noted that the scientific publication by Hofmann et al. (2014) reported 
a comprehensive dataset on maize pollen dispersal and deposition over long distances which might 

affect the previous ERA conclusions and risk management recommendations for maize MON 810/Bt11 
and 1507. 

3.2.1. New information reported by Hofmann et al. (2014) 

The study by Hofmann et al. (2014) aimed to analyse data on maize pollen deposition in relation to 
the distance from the nearest maize field. The authors employed a standardised method to record 

maize pollen grains at 216 sites in Germany, Switzerland and Belgium from 2001 to 2010, using a 
pollen mass filter (PMF) sampler. The study confirms that the highest pollen deposition is within the 

nearest maize field and decreases with increasing distance from this field. Maize pollen was sampled 

up to 4.45 km from the nearest maize field and this made it possible to gather an extended dataset on 
pollen dispersal. The 95 % confidence interval for a predicted value of pollen deposition spans almost 

two orders of magnitude. 

Hofmann et al. (2014) also discussed the implications of their study on previous risk assessments of 

Bt-maize and the associated recommendations for mitigation measures. The pollen dose–distance 
distribution curve used by Perry et al. (2010, 2011, 2012, 2013) differs significantly from that used by 

Hofmann et al. (2014) for long distances. According to Hofmann et al. (2014), this difference leads to 

the underestimation of maize pollen deposition over long distances and hence to an underestimation 
of the exposure of NT lepidopteran species to Bt-maize pollen for distances greater than 10 m. 

Hofmann et al. (2014) concluded that the isolation distances previously recommended by the EFSA 
GMO Panel to reduce exposure of certain sensitive NT lepidopteran larvae potentially occurring in 

protected habitats ‘may be inappropriately small’. 
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3.2.2. Relevance of the new information 

The EFSA GMO Panel noted that Hofmann et al. (2014) provided a comprehensive EU dataset on the 

dispersal and deposition of maize pollen over long distances; few authors have published data on 

pollen deposition at comparable distances. The EFSA GMO Panel therefore decided to check the 
validity of its previous risk management recommendations in light of this new information (EFSA GMO 

Panel, 2011a, b, 2012d, e). In this scientific opinion, the EFSA GMO Panel estimates the mortality of 
NT lepidopteran larvae using both the Perry et al. (2010, 2011, 2012, 2013) and Hofmann et al. 

(2014) dose–distance relationships (see Section 3.5). Except for the dose–distance relationship, all of 

the variables and parameters used by the EFSA GMO Panel (2011a) and/or in the Perry et al. (2010, 
2011, 2012, 2013) model were maintained at their same values. 

The Perry et al. (2010, 2011, 2012, 2013) and Hofmann et al. (2014) dose–distance relationships 
differ in several regards. Firstly, Perry et al. (2010, 2011, 2012, 2013) modelled the pollen deposition 

at varying distances on the basis of data from a single maize field (Perry et al., 2013). In contrast, 

Hofmann et al. (2014) used data from an unknown number, size and location of fields; the only 
spatial information concerned the distance to the nearest maize field. Secondly, the period of 

deposition over which pollen is aggregated in the Perry et al. dose–distance relationship is one week 
(Perry et al., 2013) and the units are ‘number of pollen grains/cm2’. The period sampled by Hofmann 

et al. (2014) is an entire flowering period (an average6 of about four weeks) and the units are ‘pollen 
grains/m2’. Therefore, throughout this scientific opinion, pollen deposition values recorded by 

Hofmann et al. (2014) were divided by a factor of 40 000 to ensure an equitable comparison of the 

two dose–distance relationships. In addition, the pollen sampled by Hofmann et al. (2014) represents 
a mixture of relatively fresh and relatively old pollen. Thirdly, Perry et al. (2010, 2011, 2012, 2013) 

assume that pollen deposition occurs over the downwind edge of the nearest field, the edge over 
which pollen deposition is maximal; no differentiation for wind direction is made by the Hofmann et al. 

(2014) dose–distance relationship. Fourthly, the Perry et al. (2010, 2011, 2012, 2013) dose–distance 

relationship is calibrated to relate directly to data from samples of pollen on the leaves of host plants, 
such as nettles; Hofmann et al. ‘2014) recorded pollen with a mechanical sampler with no verification 

at long distances to relate their measurements to pollen on actual leaves. Finally, by integrating the 
Hofmann et al. (2014) dose–distance relationship over successively distant annuli 7 around the nearest 

field, there appears to be a lack of coherence in the sense that predicted pollen densities increase 
without limit as the distance of each annulus from this field increases; this prevents reliable 

extrapolation beyond the range of the sampled data. This is not a relevant issue for the Perry et al. 

(2010, 2011, 2012) dose–distance relationship. Some of the above issues are considered further in 
Section 3.3.2. 

The Perry et al. dose–distance relationship relating dose, ‘d’’ (in pollen grains/cm2 per week), to 
distance, ‘E’ (in metres from edge of field) is: 

log10d = 2.346 – 0.145E 

The Hofmann et al. dose–distance relationship, using the same units, is: 

log10d = 1.502 – 0.585 log10E 

At the edge of the field exactly (i.e. E = 0), the estimated dose under the Perry et al. (2010, 2011, 
2012, 2013) dose–distance relationship is 221.8 pollen grains/cm2 per week. The dose used for the 

Hofmann et al. (2014) dose–distance relationship cannot be computed under the equation they 

selected, but can be seen, from Figure 3 of Hofmann et al. (2014), to be between 48 and 89 pollen 
grains/cm2 per week. 

Within the field (i.e. E < 0), the dose used for the Perry et al. (2010, 2011, 2012, 2013) dose-distance 
relationship is 2.76-fold higher than the dose used at the edge, i.e. 611.6 pollen grains/cm2 per week. 

The estimated dose under the Hofmann et al. (2014) dose–distance relationship, from their Figure 3, 
is about 89 pollen grains/cm2 per week. As might be expected, within the field and its margins, 

predicted mortalities based on the Perry et al. (2010, 2011, 2012, 2013) dose–distance relationship 

                                                           
6 In Hofmann et al. (2014), ‘the exposure time of the PMF samplers covered the main maize pollen flowering period in each 

particular area (3 to 5 weeks and sometimes longer).’ 
7 In mathematics, an annulus is a ring-shaped object, especially a region bounded by two concentric circles. 
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are, on average, more than three-fold higher than those calculated using the Hofmann et al. (2014) 
model. 

Estimated doses for 0 ≤ E ≤ 9 are higher based on the Perry et al. (2010, 2011, 2012, 2013) 

dose-distance relationship than those estimated by the Hofmann et al. (2014) dose-distance 
relationship; for values of E ≥ 10, the reverse is the case. For values of E > 20, estimated doses 

under the Perry et al. dose–distance relationship are considerably lower than those under the 
Hofmann et al. (2014) dose–distance relationship. The effect of this difference is addressed for large 

values of E in Section 3.5, below. 

3.3. Discussion of possible uncertainties pertaining to mathematical 
models 

3.3.1. Introduction 

Mathematical models developed to simulate ‘reality’ are limited by experts’ judgement, consequent 
assumptions and estimates, and hence by the existing data available at that point in time. Since all 

modelling exercises are subject to uncertainties, as with any ecological model, any new relevant 
scientific data that become available would therefore automatically lead to the refinement of the 

model and hence of the reported mortality estimates of NT Lepidoptera of conservation concern 

potentially occurring in protected habitats. The EFSA GMO Panel previously recognised certain specific 
weaknesses of the Bt-related mortality model described by Perry et al. (2010, 2011, 2012, 2013). 

In its previous outputs on maize MON 810, Bt11 and 1507 (EFSA GMO Panel, 2011a, b, 2012d, e), the 
EFSA GMO Panel carried out a full exposure assessment building on various assumptions. This took 

into account many variables and factors, some of which had to be modelled with little available data 
(EFSA GMO Panel, 2011a). Major sources of variability (e.g. incomplete availability of data concerning 

the sensitivity of EU Lepidoptera of conversation concern to Cry1 proteins) in the mortality estimates 

were already discussed in Section 3.1.2.4 of an EFSA GMO Panel scientific opinion (EFSA GMO Panel, 
2011a). 

In the current scientific opinion, the EFSA GMO Panel discusses additional sources of uncertainties 
related to the structure of the Perry et al. (2010, 2012) Bt-related mortality model (see Section 3.3.2, 

hereunder). Appendix A lists 11 sources of uncertainty triggered by biotic and abiotic factors which 

might affect the actual exposure of Lepidoptera to maize pollen in practice. 

Through an elicitation process, these 11 sources of uncertainty were discussed by the experts of the 

standing working group of the EFSA GMO Panel on ERA; these experts estimated the direction and 
magnitude of the impacts of these sources of uncertainty on the exposure level. The experts 

considered that 8 out of the 11 uncertainties were of major relevance and therefore should be 
accounted for in the calculations of the Perry et al. (2010, 2011, 2012, 2013) Bt-related mortality 

model in order to reflect a more realistic level of exposure to Bt-maize pollen (see Section 3.3.2). 

More details on the assessment of the uncertainties are given in Appendix A and in Sections 3.3.2 and 
3.3.3, hereunder. 

Based on their judgement and the available information, the experts attributed values to the means 
for each source of uncertainty through a structured discussion process. The value of a multiplicative 

factor, used to reduce exposure, was then derived from the median values of the individual scores of 

the uncertainty factors that affect exposure identified during this elicitation process. The estimated 
exposure was then reduced using this multiplicative factor in order to estimate the larval mortality of 

Lepidoptera (Section 3.5) under different exposure scenarios (Section 3.4). 

Other remaining uncertainties associated with hazards presented to exposed Lepidoptera (e.g. 

vulnerability of populations and sub-lethal effects) are further discussed in Section 3.3.3, together 
with the reasoning for not including them in the present modelling exercise. 

3.3.2. Identified uncertainties considered in the present modelling exercise 

For the new calculations of mortality of NT Lepidoptera of conservation concern (see Section 3.5), the 
EFSA GMO Panel took into consideration two major types of uncertainties: 
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Uncertainties pertaining to the structure of the Perry et al. (2012) Bt-related mortality 
model: 

1) As stated in Section 3.1, the Perry et al. (2012) Bt-related mortality model clearly 

acknowledged that predicted mortality depends on the sensitivity of the species concerned 
(EFSA GMO Panel, 2011a, b). Sensitivity is estimated through bioassay data which yields an 

LC50 value for the mortality–dose relationship; these data are variable and therefore the 
determination of LC50 values and sensitivities are subject to uncertainty. Furthermore, there 

are few datasets available for estimating the sensitivity for most assessed Bt-maize events, 

and for only a very limited number of mainly pest species (EFSA GMO Panel, 2011a). For 
maize 1507, no species of the 16 studied has been identified as being more sensitive, in 

practice, than the pest species Plutella xylostella (classified as ‘highly-sensitive’ at just less 
than the 6th percentile of the estimated sensitivity distribution, see Wolt et al. (2005) and 

Table 2 in EFSA GMO Panel, 2011a). The EFSA GMO Panel was conservative in considering 
higher species sensitivity for hypothetical species, and since predictions of mortality for such 

species extrapolate beyond the range of available sensitivity data, uncertainties are amplified 

and predictions become less reliable. In particular, for the hypothetical very-highly and 
extremely sensitive species occurring in the tail of the sensitivity distribution, recommended 

isolation distances should be regarded with caution. For reasons of transparency, the EFSA 
GMO Panel gives results here for an extensive range of quantified percentile sensitivities, from 

the 50th percentile (median average sensitivity) to the 0.1th percentile (extreme sensitivity). 

2) The spatial variability of the data from Hofmann et al. (see Figure 3 in Hofmann et al., 2014) 
was also accounted for in the calculations presented in this scientific opinion. Whereas the 

data in Hofmann et al. (2014) capture the density of maize pollen over various distances from 
multiple maize fields, the authors do not report on the location of any of these fields. Also, 

they only report one distance from field to sampler, that of the nearest one; none of the other 
distances are reported. For calculations of larval mortality, the EFSA GMO Panel therefore 

adopted both the expected regression line and the upper 95 % confidence interval from the 

Hofmann et al. dose–distance relationship (see Figure 3 in Hofmann et al., 2014). The latter 
reflects between-sample variability in a conservative fashion, since the upper confidence 

interval represents, on average, a nine-fold higher maize pollen deposition than expected. 

3) In developing the present scientific opinion, the EFSA GMO Panel considered the scenario of a 

NT lepidopteran larva within a ‘square-shaped’ protected habitat with each side 1 km long 

(hereafter referred to as ‘1 km square protected habitat’), separated from the nearest Bt-
maize field by ‘S’ metres. Since there is uncertainty induced by the non-specific spatial 

information in the data from Hofmann et al. (2014), it is necessary to avoid anomalies due to 
positional effects as far as possible. Therefore, the average mortality was calculated by 

integration, for six larvae, in the following two scenarios, each involving three larvae. In the 

first, one larva was assumed at the near edge, one at the centre, and one at the far edge of a 
protected habitat 1 km square for which the nearest Bt-maize field, a distance S metres away, 

was the nearest such field for all three larvae. In the second, one larva was assumed at the 
near edge, one at the centre, and one at the far edge of a protected habitat for which the 

next-nearest Bt-maize field was a distance just greater than S metres from the far edge. 
Effectively, this resulted in computing a weighted average mortality for larvae at the following 

distances from the nearest Bt-maize field: S, S, S, S + 500, S + 500 and S + 1 000. Again, 

this results in a conservative approach (i.e. the assumptions lead to a higher estimated 
exposure to maize pollen) in which mortality is not underestimated. 

Uncertainties contributing to the variability in exposure of NT Lepidoptera to Bt-maize 
pollen: 

The eight following sources of uncertainty are further described in Appendix A: 

- the proportion of total recorded pollen from Bt-maize, dependent on the mixture of GM and 
non-GM maize fields in the landscape, as well as on the ratio of non-Bt-maize to Bt-maize 

plants (as refugia for resistance management of target pests); 

- the pollen deposition on the flat surface of pollen samplers used by Hofmann et al. (2014) 

compared with the three-dimensional structure of a leaf; 
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- the effect of wind and rain removing pollen from leaves; 

- the displacement and accumulation of pollen on areas such as leaf veins and axils, affecting 

ingestion; 

- the competition for resources, resulting in consumption of pollen by non-lepidopteran species 
unaffected by Bt-protein; 

- the degradation of the Bt-protein in pollen; 

- the changes in feeding behaviour of NT lepidopteran larvae (e.g. inhibition or repellent 

effects); 

- the lack of temporal coincidence between sensitive larval development stage and maize pollen 
shed. 

All but one of the uncertainties listed above are considered to reduce rather than increase the level of 
larval exposure to Bt-maize pollen. Furthermore, the effects listed operate independently of one 

another, and therefore, when considered together, have a multiplicative effect on exposure. This 
multiplicative effect reduces exposure, sometimes considerably. For example, if each effect in isolation 

was to lead to a decrease in exposure of one-third, their combined effect would be to reduce 

exposure to one-twenty-fifth of its original value. 

These eight uncertainties were considered of major relevance and therefore accounted for in the 

calculations with the Perry et al. (2012) Bt-related mortality model (see Sections 3.4 and 3.5) in order 
to reflect a more realistic level of exposure to Bt-maize pollen. 

3.3.3. Identified uncertainties not considered in the present modelling exercise 

Some of the uncertainties8 contributing to the variability in exposure of NT Lepidoptera to Bt-maize 
pollen were not considered of relevance for the new calculations of mortality of NT Lepidoptera of 

conservation concern. The reasons for not integrating them into the modelling exercise are provided 
in Appendix A. 

The EFSA GMO Panel also considered whether or not the hemizygosity (i.e. one allele for the specific 

trait) of the newly inserted traits in Bt-maize might be a potential source of variability in exposure. 
Since the Bt-related mortality model by Perry et al. (2010, 2011, 2012, 2013) integrates a 

dose-response relationship estimated from available bioassay data (carried out with pollen or purified 
Bt-proteins), the EFSA GMO Panel is of the opinion that the hemizygous character of the Bt-maize was 

inherent to the establishment of the sensitivity distribution and does not need to be further accounted 
for. 

The EFSA GMO Panel points out an additional uncertainty pertaining to the Cry toxin dose–response 

relationship varying across the species considered by Perry et al. (2010, 2011, 2012, 2013). This is 
acknowledged as an additional limitation of the model as the dose–response was based on an 

extrapolation of data on Cry1Ab protein in maize Bt 176 to maize MON 810 and Bt11 (see Perry et al., 
2011, 2013). Perry et al. (2011, 2012, 2013) explained that this assumption results in highly 

conservative estimates that tend to overestimate mortality. 

Sub-lethal effects, which can result in modified development time, altered fecundity, altered body 
weight or size and might affect population dynamics of exposed lepidopteran species (Dively et al., 

2004; Lang and Vojtech, 2006). Sub-lethal effects are an important issue that can lead to adverse 
effects on a population over and above those of mortality (Cusham et al., 1994). However, little 

information exists in the literature with regard to sub-lethal effects of pollen from Bt-maize on NT 

Lepidoptera and so these effects cannot be factored into the Perry et al. (2010, 2011, 2012, 2013) 
Bt-related mortality model. 

The Perry et al. (2010, 2011, 2012, 2013) Bt-related mortality model was designed to simulate and 
predict larval mortality, resulting from the exposure of NT Lepidoptera to pollen from Bt-maize under 

representative EU cultivation conditions. Considering Bt-maize within agro-ecosystems, additional 
sources of uncertainty linked to mortality (e.g. natural mortality linked to multiple stressors and 

                                                           
8 That is, the variability in pollen production from GM and non-GM maize varieties, the spatial distribution of host plants and the 

nutritional quality of host plants. 
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vulnerability of endangered species9 populations to stressors), affecting the overall mortality of NT 
Lepidoptera, might need further consideration. In the context of the ERA of Bt-maize, the EFSA GMO 

Panel considered Bt-maize as the sole stressor and did not consider these additional sources of 

uncertainty linked to mortality and, therefore, they were not included in the new calculations (see 
Section 3.6). 

The shape (i.e. square) and size (i.e. 1 km²) of the protected habitat modelled here are potential 
sources of uncertainty with regard to estimated larval mortalities. A larva at the centre of a ‘square-

shaped’ protected habitat might be less distant from a neighbouring maize field, and hence more 

exposed to pollen, than a larva at the centre of a shape with a narrower width. However, this will 
depend on the orientation of the protected habitat relative to the nearest field and, indeed, the 

reverse might also be the case. Since the size of most protected habitats under real conditions is likely 
to exceed 1 km², the exposure of an average larva will probably be less than that modelled here. 

Despite these uncertainties induced by the non-specific spatial information as regards the Hofmann et 
al. (2014) data, the EFSA GMO Panel considers that the approach taken is conservative (i.e. the 

assumptions lead to an overestimation of exposure to maize pollen) and that mortality is not 

underestimated. 

3.3.4. Conclusion of the discussion on uncertainties 

The EFSA GMO Panel took into consideration two major types of uncertainties: (1) the uncertainties 
pertaining to the structure of the Perry et al. (2010, 2011, 2012, 2013) Bt-related mortality model, 

and (2) the uncertainties contributing to the variability in exposure of NT Lepidoptera to Bt-maize 

pollen. 

All but one of the uncertainties are considered to reduce rather than increase the level of larval 

exposure to Bt-maize pollen. 

In Section 3.5, mortality of NT Lepidoptera of conservation concern is estimated for three possible 

exposure scenarios (see Section 3.4), with different estimations of the aforementioned uncertainties. 

3.4. New calculations 

The EFSA GMO Panel compared its previously published results for protected habitats, using the dose–

distance relationship of Perry et al. (2010, 2011, 2012, 2013), with those using the dose–distance 
relationship of Hofmann et al. (2014). Specifically, the mortality of NT lepidopteran larvae was 

estimated using the relationship between mortality and dose specified by the Perry et al. (2010) and 

2012 models for maize MON 810/Bt11 and 1507, respectively, and the dose–distance relationship 
model of Hofmann et al. (2014). As stated in Section 3.3.2, the estimated mortality is computed for 

larvae within a 1 km square protected habitat, over a range of isolation distances S metres away from 
the nearest Bt-maize field. 

Three scenarios are considered when estimating mortalities at various distances from the protected 

habitat: 

(1) The first scenario is a direct comparison (hereafter referred to as ‘DC’ scenario) of the small 

spatial- and temporal-scale mortality estimates previously published by EFSA (EFSA GMO 
Panel, 2011a, b, 2012d, e) with all other parameters (other than those in the Hofmann et al. 

(2014) dose–distance relationship) remaining at the same values. This scenario is unrealistic 
because it takes no account of the uncertainties associated with exposure, as discussed in 

Section 3.3.2. The combined effect of these uncertainties will reduce exposure by at least 

one-half and probably considerably more. 

Also, it is clear that, whatever the threshold established for protection (e.g. 1 % predicted 

mortality) and whatever the isolation distance imposed, it is possible to hypothesise a level of 
sensitivity for some unknown species for which that threshold would be exceeded. Therefore, 

rather than specifying the predicted mortality for some arbitrary sensitivity class, it is more 

informative to state the percentage of species predicted to be protected at a particular 
protection level. Therefore, the major results reported in this scientific opinion are given in 

                                                           
9 Rare and endangered species might be at higher risk because of a higher vulnerability to stressors compared with common 

species, which may lead to reductions in population size to local extinction levels. 
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both forms: predicted mortality and percentage of species protected. The protection levels 
chosen for this study are 0.5 % and 1 %. 

For the reasons outlined in Section 3.1, the exposure scenario DC, allowing for a direct 

comparison of present results with previous Panel outputs (EFSA GMO Panel, 2011a, b, 
2012d, e), should also be considered unrealistic.  

In contrast to the DC scenario, the EFSA GMO Panel provides, below, the most realistic 
measure of the likely exposure, under the scenario ‘MR’. 

(2) The second, ‘most realistic’ scenario (hereafter referred to as ‘MR’ scenario) reduces exposure 

by multiplying the dose calculated from the Hofmann dose–distance relationship by a factor of 
0.0376, which is the mean figure of the uncertainties described in Section 3.3.2. This scenario 

gives the most realistic measure of the likely exposure, in the sense that the EFSA GMO Panel 
considers it is just as likely to yield an underestimate of true exposure as an overestimate. 

(3) The third, ‘conservative’ scenario (hereafter referred to as ‘CO’ scenario) is similar to scenario 
MR, but acknowledges that on 2.5 % of occasions (1 in 40 occasions) a predicted dose from 

the Hofmann et al. (2014) dose–distance relationship is expected to be as high as the upper 

95 % confidence interval, shown in red in Figure 3 of Hofmann et al. (2014). This accounts 
for between-sample variability. There is no information available from Hofmann et al. (2014) 

on within-site, within-year variability. Since this upper interval is about nine-fold higher than 
the expected value from the regression line, the multiplicative factor used is nine-fold higher 

than that in the second scenario, i.e. 0.338. This third scenario is designed to give a 

conservative estimate of mortalities, allowing for the worst-case scenario of variability in the 
doses expressed in the Hofmann et al. (2014) data, but also for the most likely reduction in 

exposure from those doses (see Appendix A). This scenario might be useful for regions where 
there are many protected habitats and risk managers regard it as unacceptable that any of 

these habitats should suffer mortality above a given threshold. The EFSA GMO Panel 
emphasises that caution is required in the interpretation of this CO scenario, because for 

every site-occasion for which exposure is nine-fold higher than the expected value, there will 

be a site-occasion for which exposure is nine-fold lower than expected, and that the overall 
average exposure remains as in scenario MR, above. 

A full list of the parameters used and their values are detailed for maize 1507 in Table 1; these 
parameters are based on the list given in Table 1 of Perry et al. (2012). Values for maize MON 

810/Bt11 are similar, except that the values of parameter10 ‘m’ are a multiplicative factor of 67.15 

higher, as explained by the EFSA GMO Panel (2011b). 

The value of the multiplicative factor 0.0376, used to reduce exposure in scenario MR, was derived 

from the values of the individual factors that reduce exposure identified in the elicitation process 
described in Section 3.3.1. These individual values are listed in Table 2. In each case, the quantity 

given is the proportion by which the Hofmann et al. (2014) predicted dose should be multiplied, to 

give the effective dose after allowance for the exposure effect. Three values are given for each factor: 
the median of the eight minimum values over the group of experts that performed the elicitation (i.e. 

the case in which assumed exposure and mortality are least); the median of the eight maximum 
values (i.e. the case in which assumed exposure and mortality are greatest); and the median of the 

eight mid-range values (i.e. (maximum + minimum)/2). The median of the eight mid-range values 
represent the value considered most realistic, in the sense that the EFSA GMO Panel considers it is 

just as likely to yield an underestimate of true exposure as an overestimate. 

The isolation distances (‘S’) studied ranged from 5 m to 3 000 m. The EFSA GMO Panel has not 
considered isolation distances greater than 3 000 m because the uncertainties outlined in Section 3.1, 

above, are sufficient to caution that extrapolation beyond this distance would yield mortality estimates 
that could not be relied upon for risk assessment, particularly for relatively large species sensitivities. 

The sensitivities studied range from the 50th percentile (i.e. median average sensitivity) up to the 0.1th 

percentile (corresponding to sensitivity exceeded by no more than 1 in every 1 000 species). 

  

                                                           
10 LC50, m (in Table 1) 
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Table 1:  Parameter values used in the Perry et al. (2010, 2011, 2012) Bt-related mortality model to 
estimate larval mortality for the three scenarios DC, MR and CO 

Parameter Type (units) Values or derivation 

Distance of protected habitat 
from nearest Bt-maize field, S 
 

Distance (m)  A variable set to various values (see 
text) 

Dose, d pollen grains/cm2 The Hofmann power function dose–
distance relationship: 

For DC, dDC = 31.8S−0.585 

For MR, dMR = 0.0376dDC = 1.20S−0.585;  

For derivation of multiplicative factor 
0.0376, see Table 2 below 

For CO, 

dCO = 9dMR = 0.338dDC = 10.8S−0.585 

LC50, m LC50 dose (pollen grains/cm2) Assumed, for five hypothetical species 
with sensitivity categorised as: 

- extreme (0.2th percentile of 
sensitivity distribution) 
m = 1.265 

- very high (1.1th percentile of 
sensitivity distribution) 
m = 14.36 

- high (7.5th percentile of 
sensitivity distribution) 163.2 

- above-average (25th percentile) 
1853 

- below-average (70.7th 
percentile) 21057 

Mortality outside crop, g(E) Percentage (–) Calculated from mortality–dose 
relationship 

Within-crop mortality, h Percentage (–) Not relevant here; protected habitat is 
remote from crop 

Host plant within-crop, e Density (per m2) Not relevant here; protected habitat is 
remote from crop 

Host plant in margin, f Density (per m2) Not relevant here; protected habitat is 
remote from margin 

Size of maize fields, C Area (ha) Not relevant here; NTL at risk are 
remote from field 

Width of margin, D Distance (m) Not relevant here; NTL at risk are 
remote from margin 

Width of non-Bt strips, w Distance (m) Not relevant here; NTL at risk are 
remote from margin 

Host plants in arable, y Proportion (–) Not relevant to small spatial and 
temporal scales 

Maize cropping, z  Proportion (–) Not relevant to small spatial and 
temporal scales 

Utilisation rate, v Proportion (–) For DC v=1; for MR and CO, v=0.425, 
see Table 2 below 

Physical effects, x  Proportion (–) For DC x=1; for MR and CO, x=0.65, see 
Table 2 below 

Temporal coincidence, a Proportion (–) For DC a=1; for MR and CO, a=0.5, see 
Table 2 below 

Large-scale exposure, L Proportion (–) Not relevant to small spatial and 
temporal scales 
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Table 2:  The eight sources of uncertainty described in Section 3.3.2 that reduce the Hofmann et al. 
(2014) estimated pollen doses to more realistic exposure levels, each(a) with values 

identified in the elicitation process of Section 3.3.1.  

Source Parameter 
name  

(see Table 1) 

Median of 
minima 
(least 

exposure) 

Median of 
maxima 

(greatest 
exposure) 

Median of 
mid-range 

values (most 
likely 

exposure) 

Product of 
medians of 
mid-range 

values 

Proportion of 
recorded pollen 
that is from Bt-
maize 

v 0.05 0.8 0.425 

0.0376 

Three-dimensional 
structure of host 
plant leaves 

 0.32 0.85 0.61 

Effect of wind and 
rain removing 
pollen from leaves 

x 0.45 0.85 0.65 

Displacement of 
pollen on leaf 

 0.55 1.0 0.825 

Competition for 
pollen 

 0.6 1.0 0.8 

Degradation of Bt-
protein in pollen 

 0.625 0.925 0.75 

Changes in feeding 
behaviour 

 0.8 1.0 0.9 

Lack of synchrony 
between larvae and 
maize pollen shed 

a 0.0 1.0 0.5 

(a): Each individual entry in the table gives the value by which the original exposure should be multiplied to yield the 
effective exposure after allowance for that effect (a value of 0.0 therefore represents the maximum reduction to nil 
exposure; a value of 1.0 represents the least reduction, implying exposure is unchanged). Individual values are then 
combined to derive the multiplicative factor 0.0376 used to calculate effective doses for the two scenarios MR and 
CO. 

3.5. Results 

This section gives details of the results of the estimation of mortality and required isolation distances 
for protected habitats, under the three scenarios described in Section 3.4. 

3.5.1. Direct comparison scenario 

The newly obtained results for the Hofmann et al. (2014) dose–distance relationship with unrealistic 
(i.e. unadjusted for any of the eight exposure effects in Section 3.3.2) exposure estimates, but directly 

comparable to the small spatial- and temporal-scale percentage mortality estimates published by the 
EFSA GMO Panel (2011a, b, 2012d, e), are given below in Table 3 for maize 1507 and in Table 4 for 

maize MON 810/Bt11. In addition to the four sensitivity categories given previously, results are also 

given for the most sensitive species of the 16 species for which data exists, i.e. the pest Plutella 
xylostella (see Table 2 in EFSA GMO Panel, 2011a). 

As mentioned above, the results for species in the ‘very high’ and ‘extreme’ sensitivity categories are, 
therefore, hypothetical. In addition, since predictions of mortality for such species extrapolate beyond 

the range of available sensitivity data, uncertainties are amplified and predicted mortalities should be 
regarded with caution. Within the tables, the type indicates whether or not the percentage mortality is 

expected to be below protection levels of 0.5 % and/or 1 %. 
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Table 3:  Estimated percentage larval mortality in a 1 km square protected habitat in the DC 
scenario where NT lepidopteran larvae are exposed during the four-week period of Bt-

maize pollen production. Results given for four categories of species sensitivity and for the 

pest species Plutella xylostella, at increasing distances(b) from the nearest field of Bt-maize 
1507, with no margins.  

Distance 
from 
field (m) 

Dose–
distance 

relationship 

‘Above-
average’ 

sensitivity 
(25th 

percentile) 

‘High’ 
sensitivity 

(7.5th 
percentile) 

Plutella 
xylostella 

(6th 
percentile) 

‘Very high’, 
hypothetical 
sensitivity 

(1.1th percentile) 

‘Extreme’, 
hypothetical 
sensitivity 

(0.2th 
percentile) 

5 Perry et al.  1.7 18.8 37.8 75.9 97.7 

5 Hofmann et al. 0.2 3.1 4.3 24.9 63.9 

20 Perry et al. < 0.1 0.1 0.4 1.4 16.5 

20 Hofmann et al. 0.1 1.4 2.0 15.0 59.2 

30 Perry et al. < 0.1 < 0.1 < 0.1 < 0.1 0.5 

30 Hofmann et al. 0.1 1.2 1.6 12.7 57.1 

50 Hofmann et al. < 0.1 0.9 1.2 10.2 54.0 

100 Hofmann et al. < 0.1 0.6 0.9 7.5 48.8 

200 Hofmann et al. < 0.1 0.4 0.6 5.5 42.6 

500 Hofmann et al. < 0.1 0.3 0.4 3.6 33.4 

1 000 Hofmann et al. < 0.1 0.2 0.3 2.6 26.3 

2 000 Hofmann et al. < 0.1 0.1 0.2 1.8 19.8 

3 000 Hofmann et al. < 0.1 0.1 0.2 1.4 16.4 

(b): Distances of 5 m, 20 m and 30 m allow a direct comparison between the Hoffman et al. (2014) dose–distance 
relationship considered in this scientific opinion and the Perry et al. dose–distance relationship described by the EFSA 
GMO Panel (2011a, 2012d). Values for which estimated percentage mortality is less than 0.5 % shown in bold italic 
type; values less than 1 % shown in bold type.  

For all events, Tables 3 and 4 show that, for the small isolation distance of 5 m, the model using the 
Perry et al. dose–distance relationship predicts greater mortality than the Hofmann et al. dose–

distance relationship, and vice-versa for isolation distances of 20 m and greater. For the Hofmann et 
al. dose–distance relationship, predicted mortality declines only slowly with increasing isolation 

distance, especially for maize 1507 and species with the hypothetical ‘very-high’ or ‘extreme’ 

sensitivity. For example, for maize 1507 (Table 3), if the protection level was set at 1 % (i.e. the 
maximum mortality that was tolerable was 1 in every 100 individual larvae), then the results indicate 

that at an isolation distance of 100 m, Plutella xylostella and all species up to and including those 
categorised as highly sensitive (in fact, an estimated 94.5 % of all species) would be expected to be 

protected at that level. This represents all the species that have so far been tested, so the only 
species that would not be protected at that level and at that isolation distance are hypothetical. 
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Table 4:  Estimated percentage larval mortality in a 1 km square protected habitat in the DC 
scenario where NT lepidopteran larvae are exposed during the four-week period of Bt-

maize pollen production. Results given for four categories of species sensitivity and for the 

pest species Plutella xylostella, at increasing distances(c) from the nearest field of Bt-maize 
MON 810/Bt11, with no margins.  

Distance 
from field 
(m) 

Dose–
distance 

relationship 

‘Above-
average’ 

sensitivity 
(25th 

percentile) 

‘High’ 
sensitivity 

(7.5th 
percentile) 

Plutella 
xylostella  

(6th percentile) 

‘Very high’, 
hypothetical 
sensitivity  

(1.1th percentile) 

‘Extreme’, 
hypothetical 
sensitivity 

(0.2th 
percentile) 

5 Perry et al.  < 0.1 0.3 0.8 3.3 31.8 

5 Hofmann et al. < 0.1 < 0.1 < 0.1 0.5 5.9 

20 Perry et al.  < 0.1 < 0.1 < 0.1 < 0.1 0.2 
20 Hofmann et al. < 0.1 < 0.1 < 0.1 0.2 2.8 

30 Perry et al.  < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
30 Hofmann et al. < 0.1 < 0.1 < 0.1 0.2 2.3 

50 Hofmann et al. < 0.1 < 0.1 < 0.1 0.1 1.7 

100 Hofmann et al. < 0.1 < 0.1 < 0.1 < 0.1 1.2 

200 Hofmann et al. < 0.1 < 0.1 < 0.1 < 0.1 0.9 

500 Hofmann et al. < 0.1 < 0.1 < 0.1 < 0.1 0.6 

1 000 Hofmann et al. < 0.1 < 0.1 < 0.1 < 0.1 0.4 
2 000 Hofmann et al. < 0.1 < 0.1 < 0.1 < 0.1 0.3 
3 000 Hofmann et al. < 0.1 < 0.1 < 0.1 < 0.1 0.2 

(c): Distances of 5 m, 20 m and 30 m allow a direct comparison between the Hoffman et al. (2014) dose–distance 
relationship considered in this scientific opinion and the Perry et al. dose–distance relationship described by the EFSA 
GMO Panel (2011a, b, 2012d, e). Values for which estimated percentage mortality is less than 0.5 % shown in bold 
italic type; values less than 1 % shown in bold type. 

As expected, since maize MON 810/Bt11 has a lower Bt-protein content than maize 1507, expected 
mortalities in Table 4 are lower than those in Table 3. As an example, if the protection level was set at 

1 %, then the results indicate that at an isolation distance of 100 m, all species up to those 
categorised as extremely sensitive (in fact, an estimated 99.7 % of all species) would be expected to 

be protected at that level. Again, this includes all species that have so far been tested. 

3.5.2. Most realistic and conservative scenarios 

Newly obtained results for the Hofmann et al. (2014) dose–distance relationship under scenarios MR 

and CO, i.e. with more realistic exposure estimates, are given below in Tables 5 and 6, for maize 1507 
and maize MON 810/Bt11. Again, results are provided for the two protection levels of 0.5 % and 1 % 

mortality. 

In Table 5, results are given first for one ‘real’ and then for three hypothetical species. The first 

species is the most sensitive species for which data exists, the pest Plutella xylostella (see Table 2 in 

EFSA GMO Panel, 2011a). The other three hypothetical species, ‘Px5’, ‘Px10’ and ‘Px25’, represent 
increasing levels of sensitivity compared with Plutella xylostella, in the sense that the dose of pollen 

for which their assumed mortality is 50 % (i.e. their LC50 values) are, respectively, 5-, 10- and 25-fold 
lower than that of Plutella xylostella. This provides a ‘safety factor’ as commonly adopted for the risk 

assessment of insecticides; a 10-fold increase in sensitivity relative to the most sensitive species yet 

recorded is thought to provide risk managers with a sufficient margin of error for the determination of 
adequate separation distances. 

For maize MON 810/Bt11, Tables 5 and 6 show that, for both scenarios, the previous recommendation 
of a 20 m isolation distance would be expected to protect the vast majority of species. The difference 

between the two scenarios is minimal, because for all species tested thus far there is low mortality, 

even in the more conservative scenario ‘CO’. 

For maize 1507, Table 5 shows that for hypothetical species Px10 with its 10-fold safety factor, an 

isolation distance of 200 m would be expected to give adequate protection at the 0.5 % level under 
the MR scenario. For the CO scenario (for 1 in every 40 site-occasions), this isolation distance would 

result in no more than an estimated 2.3 % mortality, even for such a hypothetically sensitive species. 

Table 6 shows that for maize 1507, under the MR scenario, the expectation is that the great majority 

of species (> 99 % of all species) are protected to a 1 % mortality level, even with the previously 
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recommended isolation distance of 30 m. This represents all the species that have so far been tested, 
so the only species that would not be protected at that level and at that isolation distance are 

hypothetical. 

Under the CO scenario, an isolation distance of 200 m would protect over 98 % of all species at that 
level, but an isolation distance of 1 000 m would be required to protect 99 % of species. 

As expected, the results in Tables 3, 4, 5 and 6 indicate that any increase in an isolation distance 
increases the percentage of species protected. However, the results indicate consistently that 

increasing an isolation distance by an order of magnitude, or even two orders of magnitude, makes 

relatively little difference to the percentage of species protected at any given level. At any given 
isolation distance, even a large one, there will always remain a theoretical small percentage of 

exceptionally sensitive species that could suffer mortality above this threshold. To emphasise the 
hypothetical nature of such species in Table 6, certain values are given in bold type. These represent 

the situation where, for a particular isolation distance, at a particular protection level, the species 
expected to be protected include all those tested thus far plus some hypothetical species not yet 

identified. It is clear that only a few values, and for very small isolation distances, are not of this kind.



Scientific opinion updating risk management recommendations for certain NT Lepidoptera 
 

 

 
www.efsa.europa.eu/efsajournal 20 EFSA Journal 2015;13(7):4127 
 

Table 5:  Estimated percentage(d) larval mortalities using the Hofmann et al. (2014) dose–distance relationship for NT lepidopteran larvae exposed to Bt-
maize pollen in a 1 km square protected habitat when exposure is reduced by an isolation distance of S metres from the nearest Bt-maize field, 

under two scenarios (see text).  

Event Scenario Species/sensitivity S, m 

5 20 30 50 100 200 500 1 000 2 000 3 000 

1507 MR Plutella xylostella 0.14 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.01 < 0.01 
Px5 0.8 0.36 0.29 0.22 0.15 0.11 0.07 0.05 0.03 0.03 
Px10 1.7 0.75 0.60 0.45 0.32 0.22 0.14 0.10 0.07 0.05 
Px25 5.0 2.3 1.9 1.4 1.0 0.72 0.46 0.32 0.22 0.18 

CO Plutella xylostella 1.4 0.65 0.52 0.39 0.27 0.19 0.12 0.09 0.06 0.05 
Px5 7.4 3.6 2.9 2.2 1.6 1.1 0.72 0.50 0.35 0.28 
Px10 13.6 7.1 5.8 4.5 3.2 2.3 1.5 1.1 0.72 0.58 

Px25 28.7 18.3 15.6 12.7 9.5 7.0 4.6 3.3 2.3 1.8 

MON 
810/Bt11 

MR Plutella xylostella < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Px5 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Px10 0.02 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Px25 0.06 0.03 0.02 0.02 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01 

CO Plutella xylostella 0.02 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Px5 0.09 0.04 0.03 0.03 0.02 0.01 0.01 0.01 < 0.01 < 0.01 
Px10 0.20 0.09 0.07 0.05 0.04 0.03 0.02 0.01 0.01 0.01 
Px25 0.62 0.28 0.22 0.17 0.12 0.08 0.05 0.04 0.03 0.02 

(d): Bold italic type indicates species are protected to the degree that their estimated percentage mortality is less than or equal to 0.5 % (i.e. 1 in 200 individuals); bold type indicates 
protection to level of 1 % (i.e. 1 in 100 individuals).  
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Table 6:  Results using the Hofmann et al. (2014) dose–distance relationship for NT lepidopteran larvae exposed to Bt-maize pollen in a 1 km square 
protected habitat. Values given are the percentage of those species where larvae are protected(e) to the degree that their estimated percentage 

mortality is less than or equal to 0.5 % (i.e. 1 in 200 individuals) or less than or equal to 1 % (i.e. 1 in 100 individuals), by an isolation distance of 

S metres from the nearest Bt-maize field, under two scenarios (see text).  

Scenario Event Protection 
level 

S, m 

5 20 30 50 100 200 500 1 000 2 000 3 000 

MR 1507 0.5% 97.5 98.7 98.9 99.1 99.3 99.4 99.6 99.6 99.7 99.7 

1 % 98.6 99.2 99.3 99.4 99.5 99.6 99.7 99.7 99.82 99.84 

MON810/Bt11 0.5% 99.86 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 

1 % > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 > 99.9 

CO 1507 0.5% 88.0 92.5 93.5 94.5 96.0 96.5 97.5 98.3 98.7 98.9 

1 % 92.0 95.5 96.0 96.5 97.5 98.2 98.7 99.0 99.2 99.3 

MON810/Bt11 0.5% 99.5 99.7 99.7 99.7 99.82 99.84 99.88 99.88 > 99.9 > 99.9 

1 % 99.7 99.8 99.82 99.84 99.86 99.88 > 99.9 > 99.9 > 99.9 > 99.9 

(e): Bold values indicate that for this isolation distance the species protected at the particular level includes all species tested thus far plus some hypothetical species not yet identified.
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To aid in the interpretation of these results, the EFSA GMO Panel points out the absence of correlation 
between the level of sensitivity and the rarity of NT lepidopteran species. There is no reason to expect 

a species of conservation concern to be any more or any less sensitive to the insecticidal Cry proteins 

than a pest species. However, in line with its conservative approach, the EFSA GMO Panel has 
assumed that some rare species have extreme sensitivity. 

3.6. Discussion 

The mathematical model described in the present scientific opinion focuses on exposure and 

estimated mortality caused by Bt-maize pollen to larvae of lepidopteran species of conservation 

concern, with different sensitivities to the Bt-protein expressed. This single stressor (Bt-maize pollen) 
is one of several potential stressors that can impact Lepidoptera, at one or more stages in their 

development (eggs, larvae, pupae, adults). Mortality at specific stages may or may not affect the 
mortality of the population as a whole, and does not necessarily affect it linearly. Recognised 

techniques, such as key factor analysis (Varley and Gradwell, 1960), use population dynamics data to 

place mortality at specific stages into the context of the whole population. Currently, there are 
insufficient data available to allow Bt-related larval mortality to be put into the context of overall 

mortality. 

The EFSA GMO Panel therefore recommends that the results of the mathematical model to estimate 

the Bt-related mortality of NT lepidopteran larvae are put into a broader ecological context by risk 
managers. 

4. Conclusions 

New information provided by Hofmann et al. (2014) led the EFSA GMO Panel to reconsider the level of 
exposure of NT lepidopteran larvae to Bt-maize pollen, in particular over long distances for larvae in 

protected habitats, and thus to refine the outcomes of the modelling exercise performed by Perry et 

al. (2010, 2011, 2012, 2013). 

The EFSA GMO Panel ran new simulations with exactly the same Bt-related mortality model as used 

by Perry et al. (2010, 2011, 2012, 2013) but assuming the dose–distance relationship defined by 
Hofmann et al. (2014). The EFSA GMO Panel considered different exposure scenarios and the 

uncertainties pertaining to the structure of the Perry et al. model, and/or contributing to the variability 
in exposure of NT Lepidoptera to Bt-maize pollen. In this scientific opinion, the percentage of NT 

lepidopteran species, for which the predicted mortality is less than a defined threshold protection level 

(e.g. 0.5 % or 1 %), is given for the three different exposure scenarios and different isolation 
distances from sources of Bt-maize pollen. 

The EFSA GMO Panel emphasises that, in its previous scientific opinions (EFSA GMO Panel, 2011a, b, 
2012d, e), larval mortality was estimated with regard to an unrealistically large level of exposure, as 

no allowance was made for effects that are known to reduce the effective exposure to Bt-maize 

pollen, such as the proportion of maize pollen that comes from non-Bt-maize varieties. Despite the 
fact that mortality estimates may have been overestimated for the dose–distance relationship used by 

EFSA (EFSA GMO Panel, 2011a, b, 2012d, e), no such allowances were necessary in these previous 
opinions, because the isolation distances commensurate with those mortality estimates were, in any 

case, relatively small. With the different dose–distance relationships studied here, it is necessary to 

adopt more realistic levels of exposure and hence isolation distances that are commensurate with 
appropriate mortality estimates. An uncertainty analysis of several different factors affecting the 

exposure of NT Lepidoptera to Bt-maize pollen is used to provide quantitative estimates of a more 
appropriate exposure level.  

The EFSA GMO Panel concludes that the new information provided by Hofmann et al. (2014) does not 
impact greatly on the mortality estimates for NT Lepidoptera of conservation concern, occurring within 

protected habitats and potentially exposed to maize MON 810/Bt11 pollen. Under the most realistic 

and even conservative scenarios, the estimated mortality for all species considered is always less than 
0.5 % for the previously recommended isolation distance of 20 m. Therefore, the previous EFSA GMO 

Panel recommendation for isolation distances around protected habitats, within which maize MON 
810/Bt11 should not be cultivated, remains valid (EFSA GMO Panel, 2011b). 
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However, new calculations show that the previously recommended isolation distance of 30 m from the 
nearest field of maize 1507 would still protect NT Lepidoptera with known levels of sensitivity, 

including the ‘highly-sensitive’ Plutella xylostella (EFSA GMO Panel, 2011a). Should hypothetical 

species with greater sensitivities exist, larger isolation distances would be needed to ensure the 
desired level of protection. 

The EFSA GMO Panel provides risk managers with a tool to estimate and mitigate the risk for NT 
Lepidoptera of conservation concern, considering the above-mentioned three scenarios at a range of 

isolation distances, at two protection levels and for lepidopteran species with a wide spectrum of 

sensitivities to Bt toxins, including hypothetical species not yet assessed. This will allow risk managers 
to select the most appropriate risk management measures (i.e. isolation distances) that are 

proportionate to the level of risk identified according to appropriate protection goals. 

5. Recommendations 

In Section 3.3.2, the EFSA GMO Panel acknowledges the uncertainty in the Perry et al. (2010, 2011, 

2012, 2013) model caused by the lack of data from bioassays estimating the sensitivity of a wider 
range of ‘real’ NT Lepidoptera for most assessed Bt-maize events. Furthermore, in sections 3.2.2 and 

3.3.2, the EFSA GMO Panel indicates unresolved uncertainties inherent in the data of Hofmann et al. 
(2014). 

Given the fact that these uncertainties mainly affect results on hypothetical species, the EFSA GMO 
Panel reinforces its previous recommendations for further studies on the effective exposure and level 

of sensitivity of NT Lepidoptera to Bt-maize pollen; for example, it recommends that studies are 

performed to estimate the range of NT Lepidoptera, with high sensitivity levels, effectively exposed to 
and likely to be affected by maize 1507 pollen (EFSA GMO Panel, 2011a), and to confirm the 

estimated sensitivity of NT Lepidoptera and whether or not NT lepidopteran larvae, with an ‘extremely 
high’ sensitivity to the Cry1Ab protein, are present and feeding on host plants occurring in and 

adjacent to maize fields at the time of pollen shed (EFSA GMO Panel, 2011b). 

Documentation provided to EFSA 

1. Note, dated 16 December 2014, from the Chair of the EFSA GMO Panel to the EFSA Executive 

Director to request a self-task mandate to revise its previous risk mitigation measures reducing 
exposure of sensitive non-target Lepidoptera, which potentially occur in protected natural 

habitats, as defined in Directive 2004/35/EC, to maize MON 810, Bt11 or 1507 pollen. 

2. Acknowledgement letter, dated 3 February 2015, from the EFSA Executive Director to the Chair 
of the EFSA GMO Panel. 
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Appendix A – Sources of uncertainty affecting the level of exposure of non-target Lepidoptera occurring in 
protected habitats to Bt-maize pollen 

 

Sources of 
uncertainty(a) 

Reasoning and related publications(b) Corresponding 
parameter in 
Perry et al. 

model(c) 

Uncertainty 
accounted 
for in the 

present 
modelling 
exercise(d) 

Direction and magnitude of the 
multiplicative effect on the level of 

exposure following experts elicitation(e) 

Median of 
maximum 

exposure (f) 

Median of 
minimum 

exposure(g) 

Median of 
mid-range 
exposure(h) 

Proportion of GM/non-
GM and Bt/non-Bt-
maize leading to a 
dilution effect  

Hofmann et al. (2014) consider that all maize pollen 
collected by the samplers is derived from GM maize. In 
practice, this is unlikely since a minimum of 20 % of the 
maize area should be cropped with non-Bt-maize as refuge 
for the insect resistance management. Moreover, it is not 
expected that most of the maize fields are GM or GM of the 

same event. Such a ‘dilution effect’ was observed by 
Hofmann et al. (2008). The authors report that the 
proportion of Bt-maize pollen collected by pollen samplers 
ranges between 7 and 44 % at distances of between 5 m 
and 120 m from a single Bt-maize field. Therefore, the ratio 
of GM to non-GM pollen emitted in an agricultural area might 
have an impact on exposure of lepidopteran species 
(Eastham and Sweet, 2002) 

v Yes 0.8 0.05 0.425 
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Sources of 
uncertainty(a) 

Reasoning and related publications(b) Corresponding 
parameter in 
Perry et al. 

model(c) 

Uncertainty 
accounted 
for in the 
present 

modelling 
exercise(d) 

Direction and magnitude of the 
multiplicative effect on the level of 

exposure following experts elicitation(e) 

Median of 
maximum 

exposure (f) 

Median of 
minimum 

exposure(g) 

Median of 
mid-range 
exposure(h) 

Pollen deposition on 
the flat surface of 

pollen sampler 
compared with leaf 
surface leading to a 
dilution effect 

The Hofmann et al. (2014) model estimates the pollen 
deposition on a flat/horizontal surface. However, vegetation 

is characterised by a three-dimensional structure. This 
structure can be described by the leaf area index (LAI). The 
LAI is defined as ‘the one-sided green leaf area per unit 
ground surface area’. The LAI varies between vegetation 
types. In the literature, values of between 2.5 and 8 were 
measured for crops, 1.6 to 13 for grasslands, 0.5 and 0.8 for 
rural areas and up to 19 for forests (Geyger, 1977; Hough, 
1990; Schulla, 1997; Bronstert et al., 2001; Baldocchi, 2012). 
Technical pollen samplers might therefore under- or 
overestimate the real exposure of lepidopteran species to Bt-

maize pollen  

x Yes 0.85 0.32 0.61 

Translocation/removal 
of pollen from leaf 
surfaces by wind and 
rain 

Pollen on leaf surfaces can be removed by wind and rain. 
This can lead to a reduction of exposure of larvae (Zangerl et 
al., 2001) 

x Yes 0.85 0.45 0.65 

Displacement and 
accumulation of pollen 
from leaf surfaces by 
wind and rain  

Pollen on leaf surfaces can be displaced because of rain and 
wind. Pollen can accumulate on lower leaves (Gathmann et 
al., 2006b; Hofmann et al., 2013), or on leaf veins and leaf 
axils (Hofmann et al., 2013). This could lead to a higher 
exposure of larvae of those species that feed on lower 
leaves. In most cases, larvae do not prefer to feed on leaf 
veins and leaf axils; this could lead to a lower exposure of 
larvae of species showing such inhibition 

x Yes 1.0 0.55 0.825 

Competition for 
resources, resulting in 
consumption of pollen 
by non-lepidopteran 
species unaffected by 
Bt-protein 

Pollen is a nutritionally rich food resource for many species. 
It can be expected that exposure of lepidopteran species 
might be reduced because of food competition with other 
species which consume pollen, e.g. ladybird beetles or 
hoverflies. In addition, other herbivores which also consume 
host plants of lepidopteran species will consume pollen 
together with leaf material (Wäckers et al., 2007) 

d Yes 1.0 0.6 0.8 
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Sources of 
uncertainty(a) 

Reasoning and related publications(b) Corresponding 
parameter in 
Perry et al. 

model(c) 

Uncertainty 
accounted 
for in the 
present 

modelling 
exercise(d) 

Direction and magnitude of the 
multiplicative effect on the level of 

exposure following experts elicitation(e) 

Median of 
maximum 

exposure (f) 

Median of 
minimum 

exposure(g) 

Median of 
mid-range 
exposure(h) 

Degradation of the Bt-
protein in pollen 

The data on degradation of Bt-protein in pollen is scarce. 
Ohlfest et al. (2002) observed that UV radiation did not 

affect the Bt-protein concentration after continuous radiation 
over 240 hours. However, the Bt-protein content and the 
biological activity of the protein were reduced by a factor of 
around 45, regardless of some flaws of the publication by 
Ohlfest et al. (2002). Pollen expression data compared with 
other studies are few and the mortality of the control is 
unacceptably high. In a further study, Xing et al. (2008) 
observed that Bt-proteins in maize pollen were not 
detectable after 15 or 18 days, depending on the event 

d Yes 0.925 0.625 0.75 

Changes in feeding 

behaviour of 
lepidopteran larvae 

Scientific publications report examples of feeding inhibition, 

repellent effects and changes in feeding behaviour, 
particularly for Cry1F protein (Prasifka et al., 2007,  2009; 
Goldstein et al., 2010; Gaspers et al., 2011). In contrast, 
Halcomb et al. (2000) observed no repellent effect on two 
lepidopteran species feeding on GM cotton expressing 
Cry1Ac protein 

 Yes 1.0 0.80 0.90 

Lack of temporal 
coincidence between 
sensitive larval 
development stage 
and maize pollen shed  

Only a limited number of lepidopteran species might be at 
risk. Reasons are synchronicity between larval development 
and pollen shed, hidden lifestyle of larvae (e.g. feeding 
inside stalks) or feeding behaviour. In different studies, the 
proportion of affected species was estimated. The study by 
Schmitz et al. (2010) estimated that seven butterfly species 
in Germany might be exposed to maize pollen. In specific 
field studies, the number of exposed lepidopteran species 
was limited. Gathmann et al. (2006a) identified 27 potentially 
exposed species. A similar number (33) was identified by 
Lang (2004). Furthermore, the exposure of lepidopteran 
species differs between years because of climatic factors 
(Gathmann et al., 2006b)  

a Yes 1.0 0.0 0.50 
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Sources of 
uncertainty(a) 

Reasoning and related publications(b) Corresponding 
parameter in 
Perry et al. 

model(c) 

Uncertainty 
accounted 
for in the 
present 

modelling 
exercise(d) 

Direction and magnitude of the 
multiplicative effect on the level of 

exposure following experts elicitation(e) 

Median of 
maximum 

exposure (f) 

Median of 
minimum 

exposure(g) 

Median of 
mid-range 
exposure(h) 

Mixture of different 
maize varieties 

leading to a dilution 
effect  

The number of pollen grains varies when produced by 
different maize varieties and from distinct maize fields. It is 

influenced by factors such as maturity class, morphological 
characteristics, flowering time, and nutritional and climatic 
conditions. Furthermore, the amount of emitted pollen varies 
temporally, both throughout the day and the flowering time  

 No – – – 

Spatial distribution of 
host plants 

Spatial distribution of host plants of lepidopteran species is 
very variable. Host plants in protected habitats normally have 
lower relative densities than field margins, and oviposition is 
not restricted to host plants in the protected area (e.g. 
Brassicaceae in Italian Community Interest Sites). Therefore, 
a limited portion of the population is feeding at a certain 

patch and only parts of a population might be affected. 
Furthermore, sunny sites are preferred for egg laying. 
Development time and mortality of small tortoiseshell larvae 
is dependent on microclimate (Bryant et al., 1997). This 
might lead to a higher exposure of larvae because the 
preferred host plants might be located in field margins 
(Gathmann et al., 2006a) 

e, f 

No. This is 
considered an 

effect on 
density of 

larvae per unit 
area, rather 

than on 
exposure. 
Given a 

particular 
protected 

habitat, and 
given the 

larval density 
within it, the 
percentage 
mortality, 
which is 

unaffected by 
the density, is 
estimated here 

– – – 
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Sources of 
uncertainty(a) 

Reasoning and related publications(b) Corresponding 
parameter in 
Perry et al. 

model(c) 

Uncertainty 
accounted 
for in the 
present 

modelling 
exercise(d) 

Direction and magnitude of the 
multiplicative effect on the level of 

exposure following experts elicitation(e) 

Median of 
maximum 

exposure (f) 

Median of 
minimum 

exposure(g) 

Median of 
mid-range 
exposure(h) 

Nutritional quality of 
host plants 

The nutritional quality influencing the choice of host plants 
for egg laying. Pullin (1987) reports that females of Aglais 
urticae prefer to lay their eggs on freshly sprouted, shorter 
nettles because of their better nutritional quality compared 
with older nettles 

 No. This is 
considered an 

effect on 
density of 

larvae per unit 
area, rather 

than on 
exposure. 
Given a 

particular 
protected 

habitat, and 

given the 
larval density 
within it, the 
percentage 
mortality, 
which is 

unaffected by 
the density, is 
estimated here 

– – – 

(a): Biotic and abiotic factors constituting sources of uncertainty on the level of exposure of NT Lepidoptera to Bt-maize pollen.  
(b): The relevance of the identified sources of uncertainty is supported by a scientific reasoning and related scientific publications. 
(c): Corresponding parameters were accounted for in the modelling exercise by Perry et al. (2010, 2011, 2012, 2013). For further details, see Table 3 of EFSA GMO Panel, 2011a. 
(d): Some uncertainties were accounted for in the present scientific opinion to re-run the Perry et al. Bt-related mortality model using the Hofmann et al. (2014) dose–distance relationship 

data. 
(e): A total of eight experts were asked to quantify the direction and magnitude of the impact of the uncertainties on the overall exposure level of NT Lepidoptera to Bt-maize pollen. Each 

individual entry gives the value by which the original exposure should be multiplied to yield the effective exposure after allowing for that effect (a value of 0.0 therefore represents the 
maximum reduction to nil exposure; a value of 1.0 represents the least reduction, implying exposure is unchanged).  

(f): Median of the maximum end of the range over all the experts, expressed as a percentage (highest exposure). 
(g): Median of the minimum end of the range over all the experts, expressed as a percentage (lowest exposure). 
(h): Median of the middle of the range over all the experts, expressed as a percentage (most likely exposure). 

 


