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A B S T R A C T

The cultivation of Bt maize, genetically modified to be resistant to insect pests, has led to intense scientific and
political debate about its possible adverse impacts on biodiversity. To better address this question we developed
an individual-based simulation model (LepiX). LepiX considers the temporal dynamics of maize pollen shedding
and larval phenology, and pollen deposition on host plants related to distance from the maize field, in order to
estimate mortality of lepidopteran larvae exposed to toxic Bt pollen. We employed a refined exposure analysis,
comparison to previous approaches, using recent evidence on leaf pollen deposition and accounting for the
spatial heterogeneity of pollen on leaves. Moreover, we used a stochastic approach, considering literature data
on a minimum dataset for butterfly biology in combination with historic data on temporal pollen deposition to
predict the coincidence between larval phenology and pollen deposition. Since conservation management ac-
tions may act at the level of the individual for protected species, LepiX, as an individual based spatially explicit
model, is suited to assist both risk assessment and management measures based on threshold mortalities. We
tested our model using Inachis io (Lepidoptera: Nymphalidae) as butterfly species and the cultivation of insect
resistant MON810 maize. In accordance to predictions based on other models we identified mortality risks of I. io
larvae for the second larval generation. An analysis of the sensitivity of input parameters stressed the importance
of both the slope and the LC50 value of the dose-response curve as well as the earliest day of larval hatching.
Using different published data to characterize the dose-response of MON810 pollen to I. io we revealed con-
sequences due to uncertainties in ecotoxicological parameters and thus highlight the importance of key biolo-
gical parameters for reliable estimates of effects, and decision making (e.g. isolation distances) in risk assess-
ment.

1. Introduction

Genetically modified (GM) crops are cultivated worldwide, and
most of these crops are resistant to herbicides, insects or both (Parisi
et al., 2016). The commercial use and release of GM crops in the en-
vironment is regulated and only granted after the risks for human
health and the environment have been assessed (EC, 2001).

Insect resistance is most commonly implemented by transferring
genes originating from the soil bacterium Bacillus thuringiensis into the
crop which will express insecticidal Cry or Vip proteins in the plant
tissues (Glare and O'Callaghan, 2000). A number of Bt maize plants
target Lepidoptera, such as the European corn borer (Lepidoptera:
Crambidae, Ostrinia nubilalis) and the Mediterranean corn borer (Lepi-
doptera: Noctuidae, Sesamia nonagrioides). However, as Bt proteins do

not act species specific (van Frankenhuyzen, 2009, 2013), effects of Bt
crops on non-target organisms, e.g. non-target butterfly larvae, have to
be considered in the risk assessment (Andow and Hilbeck, 2004; Andow
and Zwahlen, 2006; Hilbeck et al., 2011; Lang and Otto, 2010; Marvier,
2001; O'Callaghan et al., 2005; Romeis et al., 2008; Wolfenbarger and
Phifer, 2000).

In most Bt maize, the Bt proteins are expressed in all plant tissues,
including pollen. As maize is wind pollinated and produces large
amounts of pollen (Eastham and Sweet, 2002), habitats adjacent to Bt
maize cultivation fields will be exposed to pollen containing Bt proteins
(Hofmann et al., 2010), and off-field effects have to be considered in the
risk assessment. Maize flowering and the larval phenology of many
butterfly species overlap; therefore, non-target butterflies in Europe are
likely at risk (Lang et al., 2015; Musche et al., 2009; Schmitz et al.,
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2003; Traxler and Gaugg, 2005). This risk will depend on a variety of
factors, such as the degree of temporal overlap in phenologies, amount
of pollen to be expected on host plants, toxin concentration in pollen
and sensitivity of the non-target species.

Risk assessment prior to GMO authorization requires substantial
data and analytical tools. In 2009, the European Food Safety Authority
(EFSA) deployed a first mathematical simulation model to predict the
consequences of cultivation of Bt maize on non-target Lepidoptera
(EFSA, 2009; Perry et al., 2010). This model has been developed further
to take new aspects and data for the assessment into account (EFSA,
2011a,b, 2012, 2015). In addition, Holst et al. (2013a,b) estimated the
mortality of the Peacock butterfly Inachis io caused by Bt maize in a
simulation model of the butterfly’s annual life cycle over-laid with the
phenology of maize pollen deposition on the leaves of the food plant
Urtica dioica. However, the model has not been used in the context of
regulatory purposes and did not include spatial aspects, such as the
distance of larvae and host plants to the maize field.

Here, we present a new simulation model (LepiX 1.0) to estimate off-
field effects of Bt maize cultivation on non-target butterfly species. Our
model is designed to simulate the temporal overlap of maize flowering
and larval phenology, pollen deposition on host plants depending on
the distance to the maize field, and the effect of Bt pollen exposure on
the mortality of butterfly larvae. Because we can obtain information on
both individual larvae and populations LepiX is especially suited to
analyse effects on rare, endangered and/or protected Lepidoptera as
these may be protected on the level of the individuum and/or popu-
lation. The exposure module of our model uses the so far most com-
prehensive set of field data from research projects dealing with maize
pollen deposition, which were initiated by the German Federal Agency
for Nature Conservation in collaboration with German federal states to
improve the assessment of Bt maize exposure on non-target organisms
(Hofmann et al., 2009, 2011, 2013, 2014, 2016).

2. The LepiX model

At first, we specify the purpose of the model (Section 2.1) and give a
general overview of its structure (Section 2.2.1) before all submodels
are described in detail (Section 2.2.2).

2.1. Purpose

The simulation model LepiX (Lepidoptera and ecotoxicology) 1.0 is a
tool to estimate mortality probabilities for non-target insect species
affected by Bt maize, dependent on the distance from the maize field.
The information obtained assists the risk assessment and risk manage-
ment of genetically engineered plants that express Bt proteins as in-
secticidal components.

2.2. Model description

In principle, LepiX is a generic model that can be parametrized for
any species or group of butterflies or moth and for any geographical
location and for any GM crop variety. As a case study we used the Bt-
maize event MON810 and the non-target species Inachis io at two lo-
cations in Germany (Bad Hersfeld and Rheinfelden), where it is known
to be univoltine and bivoltine, respectively (see Section 3).

2.2.1. General structure and design
Species protected under e.g. the German Federal Species Protection

Regulations (Bundesartenschutzverordnung; BArtSchV) are protected
not only as populations but also as individuals. Therefore, a model for
risk assessment of individuals is desirable and motivates an individual-
based approach (Grimm and Railsback, 2005). LepiX is discrete in time
and simulates a time period of one year with a time step of one day. For
each year, both a specific temporal pattern of pollen shedding during
the flowering period and mean daily temperatures are randomly chosen

from historical field data. These temporal patterns serve as input data
for the simulation of butterfly phenology and exposure. The daily de-
velopment of larvae depends on the sums of daily temperatures
(weather). The risk of mortality per day depends on the amount of
pollen one single larva is exposed to daily. The quantitative exposure is
not equal for all larvae; therefore, we included spatial variation of the
deposition on host plants according to the data of Hofmann et al.
(2016). This leads to an individual pollen exposure for each larva in the
model.

The LepiX model simulates the development and exposure of 1000
larvae during one year. This simulation was repeated 1000 times with
different randomly chosen temporal patterns for flowering periods
(pollen shedding) and daily temperatures (weather). In the following,
we refer to these 1000 simulated populations as 1000 “simulation runs”
and denote the ensemble of the 1000 simulated populations as one
“scenario” (i.e. for one fixed model parameter setting).

The distances between the maize field and the location of maize
pollen deposition were taken into account by using long-term mon-
itoring data of fields which were cultivated under common agricultural
conditions (Hofmann et al., 2014). In this way, the LepiX model is in
substance spatially implicit, i.e. the exact positions of the larvae in
space or on the host plants are not considered.

The LepiX model consists of five modules (Fig. 1). The weather
module provides the daily temperatures of one year and passes this
information to the individual module, where the individual larval
periods are simulated. The pollen deposition module provides the
amount of Bt maize pollen on the host-plant leaves at any distance from
the maize field and for each day of the year. The exposure module si-
mulates the relevant exposure to pollen of each larva. The individual
exposure rates finally result in the individual risks of mortality (mor-
tality module).

In the LepiX model, the individuals do not interact, and no re-
production or resource limitation is considered. Stochasticity plays a
major role in all sub-models (for details, see Section 2.2.2). Especially
the start of the larval stage and the daily variation in consumed pollen
are drawn from probability distributions, which also stochastically af-
fect individual traits, e.g. the development time of a larva.

The model is implemented in C# following a purely object-or-
ientated approach and agent-based modelling design patterns (Grimm
and Railsback, 2005) using R for statistical post-process analysis (R
Core Team, 2016).

Fig. 1. Conceptual diagram of the LepiXmodel. The length of the individual larval stage is
simulated by daily temperature values (degree-days), and the exposure to Bt pollen is
related to the deposition of pollen on leaves. Both processes determine the total intake of
pollen by an individual larva and result in an individual risk of mortality derived from the
assumed dose-response curve.
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2.2.2. Sub-models in detail
Weather module:
The weather module provides the mean daily temperature T t( ) for a

day (of year) t in the run of one year. For the two example study sites
Rheinfelden (Baden-Württemberg, Germany) and Bad Hersfeld (Hesse,
Germany), we used series of daily temperature measurements provided
by the German Weather Service (DWD) for the years 1961–2010. For
each simulation run, one specific series of measurements over the
period of one year was randomly chosen, i.e. for one simulation run, the
1000 individuals considered experienced the same daily temperatures.
These daily temperatures T t( )determine the development time of one
larva by means of a degree-days approach, as described in the in-
dividual model below.

Individual module:
The individual model considers the phenology of butterfly larvae. In

this module, both the day of occurrence and the duration of the larval
period from hatching until pupation are determined for each larva. This
module uses as input data a start date for the hatching of a larva from
an egg (t0,L, denoted by an ID code L) and the daily temperature series
T t( ) from the weather module.

t0,L is drawn for each larva individually from a beta distribution,
where the range of the distribution, i.e. the possible earliest and latest
days for hatching, is obtained from published phenology data, based on
field observations for the species considered. If multiple butterfly gen-
erations occur per year in the corresponding location, the module
considers multiple hatching periods. In the following, the earliest day of
hatching of a generation is denoted by tH,begin. The duration of larval
period ΔtL of larva L is calculated from the weather data and the simple
degree-days approach (Baskerville and Emin, 1969), i.e. the daily, non-
negative differences between temperature T t( ) and a given threshold
temperature Tmin are accumulated until a limit degree-days tempera-
ture TDD,Larva is reached. In recursive form, this reads as

= − + − >T t T t T t T t t( ) ( 1) max{ ( ) ; 0} foraccum accum
Lmin 0,

= −T t T t Tand ( ) max{ ( ) ; 0}.accum
L L0, 0, min

The day t', whereT t( ')accum exceeds TDD,Larva, is assumed to set the day of
(individual) pupation; thus, the larval period of an individual L has the
length of ΔtL= t'− t0,L.

The length of the individual pupal period ΔtP is calculated analo-
gously to the larval period with the same temperature threshold Tmin,
but with a different limit degree-days temperature TDD,Pupa.

In summary, this module defines the following state variables for
each butterfly larva: time of hatching t0,L, duration of larval period ΔtL,
and duration of its pupal period ΔtP. The end of the larval instar is
tend,L= t0,L+ ΔtL, and the emergence of imagines is at
tend,P= t0,L+ ΔtL+ ΔtP.

Deposition module:
Maize pollen deposition was derived from a large dataset (Hofmann

et al., 2014) obtained by standardized technical sampling (PMF mass
filter; standardized via VDI 4330-3 and CEN-TS 16817-1) covering 10
years and different locations, mostly in Germany but also including sites
in Belgium and Switzerland. Each of the 214 sampling points used in
Hofmann et al. (2014) represents the integrated pollen deposition for
one sampling point over the entire flowering period and thus approx-
imates the total amount of pollen deposited at this location. All these
data reflect the common maize cultivation practices in Germany, which
also should be expected if Bt maize is commercialized. The deposition
module simulates the maize pollen flow during the flowering period
and the deposition of maize pollen on host plants for each day t and for
different distances d from a maize field. The host plant used in our case
was nettle (Urtica dioica L.). The amount of pollen was transformed to
the amount of pollen accumulated on host plants (i.e. nettles leaves) by
calibrating PMF data to field data of pollen deposition on host plants
(Hofmann et al., 2016).

Maize pollen deposition dependent on the distance to the

maize field:
According to Hofmann et al. (2014), the mean amount μ of maize

pollen deposition, as measured by PMF samplers, follows a power law
function dependent on the distance d from the nearest maize field:

= −μ d d( ) 127· 0.585

(note that dimensions are neglected). This standardized integrated de-
position measured by a PMF mass filter quantifies the total amount of
maize pollen over the entire maize flowering period. With the usual
cultivation practices in Germany, the standardized integrated deposi-
tion varies according to regional and local differences (e.g. climate, soil,
sowing date, seed varieties). Taking this variation into account, the
integrated pollen deposition variation at a given distance d follows a
log-normal distribution

∼p d LN μ d σ d( ) ( ( ), ( )),

where μ d( ), and σ d( ) can be derived from the mean and the confidence
intervals of the datasets, respectively, provided by Hofmann et al.
(2014). According to the distance d, the value of p d( ) is chosen ran-
domly for each simulation run.

Temporal distribution of pollen deposition:
Pollen release during the flowering period is not constant but de-

pends on climatic conditions. A diurnal pattern is typical for the release
of pollen and is correlated to turbulent weather conditions during the
day (Boehm et al., 2008; Hofmann et al., 2013). Unfavourable weather
conditions regularly cause interruptions of the period in which maize
pollen is released, which leads to a prolonged period of pollen dispersal
rather than a compact period (Hofmann et al., 2013). Long-term mea-
surements of maize pollen are available from Ganderkesee (Lower
Saxony, Germany) for the years 1994 to 2010 (data kindly provided by
R. Wachter, Pollenflug Nord, in cooperation with F. Hofmann; see also
Hofmann et al. (2008, 2013)). These temporally resolved periods of
maize pollen deposition were used to simulate the variability of the
temporal pattern of maize pollen over the flowering period.

In the simulation, how the actual total pollen amount at a distance d
is distributed over the days in a year comprises two aspects. First, the
starting day of pollen shedding has to be set. Second, one has to de-
termine for each day which proportion of the actual total amount of
pollen is disposed per day, i.e. the temporal pattern of pollen dis-
tribution in a simulation year. As a basis for our model approach, we
used long-term data of the temporal maize pollen shedding for the site
Ganderkesee (see above). These data encompass the time span over
which the pollen concentration in the air …H t H t( ), , ( )1994 2010 was
measured per day t in 1 of 17 consecutive years (1994–2010).

The starting date tS of the temporal flowering pattern for a simu-
lation year is drawn from a uniform distribution

∈t U t t( , ),S S begin S end, ,

where tS,begin and tS,end is the earliest and latest day in a year, respec-
tively, on which pollen was observed in the field.

In order to simulate realistic temporal patterns of pollen deposition,
the relative proportion of pollen that is deposited per day is calculated
from each of the 17 datasets of Hofmann et al. (2009). Thus, we ob-
tained 17 different temporal patterns …h t h t( ), , ( )1994 2010 for the relative
daily pollen deposition, each of which fulfill

∑ =
=

h t( ) 1,
t

n
0

364

where n denotes the year of measurement 1994, …, 2010.
For each year in a simulation run, a specific temporal pattern h t( )n

is randomly chosen. But as described above, the starting day tS for
shedding is randomly distributed. Therefore, we have to shift the values
of h t( )n in time such that the beginning of shedding in the chosen
temporal pattern h t( )n coincides with the chosen starting day tS. We
denote these shifted temporal patterns as h t( )n t, S . In this way, we have
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at distance d

= ⋅P t p d h t( ) ( ) ( ),air d n t, , S

i.e. the simulated pollen deposition at day t in a simulation year for
a given starting day tS.

Estimation of pollen deposition on leaves:
Since the daily amount of pollen in the air determines the amount of

pollen on host-plant leaves, it is necessary to relate PMF estimates of
pollen deposition (air) to pollen deposition on the acceptor surface
(leaf). In the model, this is achieved by the factor γ, which has been
determined in field experiments by using different methods in parallel
(Hofmann et al., 2016). The daily amount of pollen on the leaves is
assumed to accumulate on the host-plant leaves, and therefore, the
deposition amounts from the previous day must be taken into account.
However, we assumed that the amount of pollen of the previous day
only partly remains on the host leaves because of wind and/or rain. To
simulate this decline in pollen density over time, a loss rate ε is in-
troduced, which describes the relative amount of pollen that is lost per
day.

In summary, the mean deposition on day t on a host-plant leaf at
distance d for a year is

= − − +P P γ P(t) (t 1)·(1 ε) · (t).leaf leaf air d,

Pollen is not uniformly distributed on host-plant leaves (Hofmann
et al., 2011, 2016). Hofmann et al. (2016) have shown that the spatial
distribution of maize pollen on host-plant leaves can be described by a
log-normal density distribution with specific parameters for different
plant species. Because butterfly larvae, especially young and thus sen-
sitive instars, feed only on a small fraction of leaves, the spatial dis-
tribution of pollen will ultimately influence the exposure of larvae to
pollen and thus the magnitude of effects. As dose and effect are non-
linearly related (see mortality module), it is important to include the
spatial variability of pollen densities on host-plant leaves (Hofmann
et al., 2016).

The data of Hofmann et al. (2016) motivates the use of a log-normal
distribution, which uses P t( )leaf as μ parameter and a constant σleaf
parameter. Thus, the pollen amount P t( )leaf i, on a leaf i is considered to
be a derivative:

∼P t LN P t σ( ) ( ( ), ).leaf i leaf leaf,

Exposure module:
The exposure module estimates the amount of pollen per cm2 that

each larva is exposed to. This information is required for determining
the risk of mortality (see next section). In determining the pollen ex-
posure for each larva in a simulation run, we made two assumptions: (i)
each larva feeds only on one particular part of a leaf per day and (ii) the
pollen exposure of a larva L results from the deposition values P t( )leaf i,
of a number of m consecutive days, as described in detail in the fol-
lowing.

According to the first assumption, the daily deposition of pollen
P t( )L on the position where a larva L is located is =P t P t( ) ( )L leaf i, , where
P t( )leaf i, is provided by the deposition module. These values are used to
calculate the exposure AL of the specific larva using the equation

∑= ⎛

⎝
⎜

⎞

⎠
⎟

+

A P t1
4

max ( )L
t

t

L

4

∈ … −t t tfor every ( , , 4).S L end L0, ,

AL is actually the mean pollen deposition on leaves derived from the
sum of pollen deposition during the time period m. The time period m
was set to 4 days in our example as a proxy for the exposure time that
elicits effects from the uptake of Bt pollen.

Mortality module:
The pollen exposure of individual larva AL (as described in the

previous section) is the basis for deriving the risk of mortality of an

individual larva. We assume in our model that each individual larva can
only be subjected once to mortality caused by the ingestion of Bt pollen.

In order to estimate the toxic effect of Bt pollen on a given species c,
the slope and the LC50 value from an empirical dose-response re-
lationship of pollen of the relevant Bt maize event and the butterfly
species are needed. We used a Hill equation as a dose-response re-
lationship (Frank, 2013) to calculate the mortality Mc dependent on the
amount of pollen AL to which a larva of the species c is exposed:

=
+

−( )
M A( ) 1

1
.c L

A
LC

slope
L

c50,

This individual mortality is used to determine the mortalities of a
population of 1000 larvae in a simulation run and the mean mortality of
1000 runs, i.e. 1000 simulated populations are considered as an esti-
mator of the mean risk of mortality for one particular parameter setting
(scenario).

3. Case example: calibration and settings

The LepiX model can, in principle, be used for any butterfly species,
geographical region and Bt maize event. We calibrated the model for Bt
maize event MON810, which produces the lepidopteran-active Bt pro-
tein Cry1Ab. MON810 maize is the only Bt maize currently approved
for cultivation in the EU. The lepidopteran species I. io used in our case
example (Bryant et al., 2000, 2002; Ebert and Rennwald, 1991) is
common in agricultural areas of Europe and is protected in some EU
member states (Holst et al., 2013b). I. io also has been the subject of
earlier risk assessments and is used as a model species (EFSA, 2009;
Holst et al., 2013b; Perry et al., 2010). Different estimates of the toxi-
city of MON810 pollen for I. io have been found (see Table 1 below).

3.1. Geographical regions

We chose two locations for our study. In Bad Hersfeld (50°52ʹ12″N,
9°42ʹ7ʹʹE) in central Germany, I. io is univoltine; in Rheinfelden
(47°35ʹ23ʹʹN, 7°46ʹ8″E) close to the Swiss border, I. io is bivoltine (Ebert
and Rennwald, 1991).

3.2. Individual module

Because generally few phenotypic data of larval stages are available
in the literature, we calculated the beginning of the larval period based
on phenotypic data of imagines as follows. We chose the earliest egg
hatch date tH,begin, such that the simulated occurrence patterns of the
imagines matches the phenotypic observations given in the literature
(Ebert and Rennwald, 1991). Thus, for Bad Hersfeld, the value of tH,begin
was set to 19 May, and for Rheinfelden, the value of tH,begin of the first
larval generation was set to 15 May and the value of the second

Table 1
Parameter values of the dose-response curve used to estimate mortality of I. io larvae after
exposure to MON810 pollen.

Parameter Value Reference

LC50 [pollen/cm2] 5800 Felke et al. (2010) (Bt176 pollen); scaled to
MON810 in Perry et al., 2010

2972 Felke et al. (2010); scaled to MON810 in Holst et al.
(2013b);

1351 Lauber (2011) in Holst et al. (2013b)
451 Precautionary value estimated in Holst et al.

(2013b)

Slope (logita) −1.76 Holst et al. (2013b)
−0.84 (probit 1.095) Saeglitz et al. (2006) used in Perry

et al. (2010, 2012)

a Matching the Hill equation.
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generation was set to 20 July.
The temperature sums for larval and pupal development were 315.2

and 110.0 degree-days, respectively, with a lower temperature
threshold of 8.3 °C (Bryant et al., 2002).

3.3. Deposition module

We chose the earliest day for the beginning of pollen shedding
(tS,begin) as 14 July and the latest day (tS,end) as 5 August. These dates
represent the earliest and latest dates recorded in long-term measure-
ments of the temporal distribution of maize pollen (see deposition
module in Section 2.2.2). The ratio γ of pollen flow in the air to pollen
deposition on the host-plant leaves (nettle) was set to 0.68, as given in
Hofmann et al. (2016).

Only few data are available for estimating the daily loss rate ε of
pollen on plant leaves. To obtain a realistic value of ε, we compared
distributions of on-leaf pollen deposition provided by field measure-
ments (Hofmann et al., 2016) with simulated distributions. We identi-
fied ε=20% pollen loss per day as a reasonable value for ε in our
simulations. This value is in the range of other estimates, e.g. Holst
et al. (2013b), although the standard deviation of the simulated dis-
tributions was slightly lower than that of the field data of Hofmann
et al. (2016).

3.4. Mortality module

Different estimates of the dose-response curve of I. io to pollen
containing Cry1Ab from MON810 have been determined. To take this
source of uncertainty into account, we ran the model with different
combinations of the various LC50 values and the two slopes of the dose-
response curve (Table 1 and Fig. 2).

When necessary, the slope parameter slope was transformed from a
probit-response relationship to the Hill equation (Perry et al., 2010).

4. Results

According to the calibration of the model for I. io and the two
geographical regions, we performed various simulations to validate the
model, estimate rates of mortality and analyse the sensitivity of the
model results according to the input parameters.

The output of the individual module simulating the phenology of I.
io was in good agreement with field data (Ebert and Rennwald, 1991)
for larval and adult phenology in the regions where univoltine (e.g. Bad
Hersfeld) or bivoltine (e.g. Rheinfelden) larval generations of I. io can
be expected. This corroborates the phenology module in which a simple
degree-days model and literature data (Bryant et al., 2000, 2002) have
been used to simulate the phenology of I. io. According to Ebert and
Rennwald (1991), the first larval generation of I. io can be observed in
the upper Rhine valley from May to the beginning of July, and the
second larval generation can be observed from August to September,
with some larvae developing in October or November in extreme years.
The imagines from the first and second larval generation can be sighted
typically in July and from the end of August through October, respec-
tively. We simulated larval and adult phenologies for both generations
using the climatic data of Rheinfelden (Fig. 3). We found a good cor-
respondence between the observed and simulated times for the occur-
rence of both larvae and imagines. Especially the simulated larval
phenology fit the observations well and confirmed (sensu Oreskes et al.,
1994) our approach.

To estimate the average risk of mortality of an individual of I. io
dependent on the distance to a field of Bt maize, we simulated 1000
populations of 1000 individuals each (see Section 2.2.1). Simulations
showed no apparent (< 1%) mortality rates with the climatic condi-
tions in Bad Hersfeld, where I. io is univoltine (data not shown). With
climatic data from Rheinfelden, where I. io is bivoltine, the simulations
predicted low mortality rates of the first larval generation of I. io similar
to those of Bad Hersfeld, but higher mortality rates (> 1%) for the
second larval generation, depending on the distance to the maize field
and toxicological input data (Fig. 4). We used a threshold of 1% mor-
tality, as this threshold is currently used in the risk assessment of Bt

Fig. 2. Dose-response curves for different LC50 values (red: 451; green: 1351; blue: 2972;
black: 5800 Pollen/cm2; see Table 1) with (a) slope=− 1.76 (Holst et al., 2013b) and (b)
slope=− 0.84 (Perry et al., 2010, 2012; Saeglitz et al., 2006). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. Simulated phenology of I. io for climatic data of Rheinfelden, Germany for si-
mulations with 1000 individuals over 1000 populations. (a) First generation; (b) second
generation. Blue: number of hatching individuals; red: number of larvae; black (dashed):
number of imagines. The earliest hatching date tH,begin of the first generation was set to 15
May and that of the second generation was set to 20 July. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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maize at the EU level (EFSA, 2015). Both the distance and the eco-
toxicological parameters influenced the risk of mortality (Fig. 4).
Mortality decreased with increasing distance to the maize field and
with decreasing sensitivity (increasing LC50). Furthermore, mortality
estimates depended on the slope as an input parameter to describe the
dose-response equation. Steeper slopes in this respect decreased mor-
tality estimates. Because of non-linear relationships, this decrease was
more distinct with increasing distance to the maize field. For example,
assuming an LC50 value of 2972 pollen/cm2, mortalities of 5.9% and
0.3% were predicted at a distance of 1m, whereas mortalities of 0.75%
and 0.04% were predicted at a distance of 100m for the applied slopes
of −0.84 and −1.76, respectively (see also sensitivity analysis below).

To test the robustness of the model results presented above against
the chosen values for the model parameters, we performed a two-stage
sensitivity analysis. We analysed simulations of the second generation
of I. io in Rheinfelden, which had the highest mortality in our simula-
tions. In the first step, we identified parameters that had the most se-
vere impact on the results. For this purpose, for each of the four dif-
ferent LC50 values, we used a Latin hypercube sampling with uniform
stratified parameter values for nearly all model parameters (Saltelli
et al., 2008) and simulated a total of 1000 simulations runs (data not
shown). The analyses indicated that besides the LC50 value, whose
impact on mortality is obvious, the average individual risks of mortality
are most strongly influenced by the parameters slope in the dose-re-
sponse curve and the earliest day of hatching (parameter tH,begin) of the
second generation.

In the second step, the two parameters (slope and tH,begin) were
varied systematically in combination to test for their impact on mor-
tality risks. The risk of mortality invariably decreased with steeper
slopes for different dates of first hatching (Fig. 5). Complementary, the
mortality rates for different slopes depicted a maximum at ca.
tH,begin=200 days, i.e.18 July. This date mirrors a maximum overlap of

larvae occurrence and pollen shedding.
The mean mortality rates as shown in Figs. 4 and 5 were derived for

each parameter set from a sample of 1000 simulated populations, each
providing one mean individual mortality rate within the population.
The differences between the simulated populations are solely due to
different realizations of random processes, i.e. weather and individual
hatching times (see section 2.2.2). To estimate the variation in in-
dividual mortality rates, we looked for the variation in risks of mortality
within single populations. As an example, Fig. 6a demonstrates for a
specific parameter setting with a distance of 40m from the Bt maize
field the distribution of 1000 mean individual mortality values gained
from 1000 simulated populations. In this example, the mean mortality
risk was about 25%, but it varied from 0 to about 50%. When we
considered the total sample of 1000×1000 pooled individuals from all
simulated populations for one specific distance to the field, we observed
a multimodal distribution with a distinct maximum in the class of
nearly zero mortality (Fig. 6b), where approximately 10% of all in-
dividuals do not notably suffer mortality. The remaining individuals
were assigned to risks of mortality ranging from 1 to approximately
80%.

The graphs in Fig. 6c and d exemplify the distribution of individual
mortalities for two particular populations using the identical input
parameters as in Fig. 6b. Although both populations belong to the same
sample that leads to an average individual mortality risk of about 25%,
the simulations demonstrate that different distributions can be ob-
served: In one run, the majority of individuals of a population hardly
suffered any mortality (Fig. 6c), whereas in other runs, individual
mortality covered the entire range between 0 and 1 (Fig. 6d). Note, that
this striking difference is solely due to random effects.

5. Discussion

5.1. General remarks

The LepiX model presented here is an individual-based model de-
signed to estimate the risk of mortality of non-target butterfly larvae
caused by exposure to Bt toxins expressed in pollen of insect-resistant Bt
maize. LepiX can be easily applied to other Bt maize events (both single
and stacked events) and to other species of Lepidoptera. The specific
data needed should, in principle, be available from the scientific lit-
erature and from market applications of the respective Bt maize. The
conceptual model can be also applied for crop species other than maize
and different taxa of non-target organisms.

The agent-based approach in the LepiX model allows explicit con-
sideration of the impact of variability on the estimation of the in-
dividual risk of mortality. In the LepiX model, variability is considered
in nearly all features: weather (temperature), occurrence of larvae,
pollen deposition and individual exposure. This variability in the pro-
cesses finds expression in stochastic distributions for the output vari-
ables and provides a much more distinct interpretation of model out-
comes than the use of just mean values alone. In this way, LepiX is
suitable for assessing individual mortality probabilities, which might

Fig. 4. Relationships of larval mortality to distance to maize field and
to LC50 values. Left: slope=−1.76 (Holst et al., 2013a,b); right:
slope=−0.84 (Saeglitz et al., 2006; Perry et al., 2010, 2012).
Simulated mortalities of second generation I. io larvae in Rheinfelden
are shown at different distances from a Bt maize field and for different
dose-response curves, i.e. different LC50 and slope values. (For inter-
pretation of the colors in this figure, the reader is referred to the web
version of this article.)

Fig. 5. Sensitivity analysis for a given LC50 value of 1351 pollen/cm2. The values of the
slope in the dose-response curve (cf. Table 1) and of the earliest day of larval hatching
(parameter tH,begin) for the second larval generation of I. io in Rheinfelden are system-
atically varied. (For interpretation of the colors in this figure, the reader is referred to the
web version of this article.)
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need to be considered for strictly protected species. The ability to assess
such individual mortality probabilities is one major advantage of the
use of agent-based models (Grimm and Railsback, 2006). In this re-
spect, LepiX differs from the model currently used in the EU risk as-
sessment (EFSA, 2015; Perry et al., 2010, 2012).

LepiX provides not only quantitative values for important output
variables (such as the risk of mortality), but also constitutes a valuable
tool for investigation of the sensitivity of model assumptions to these
variables. The model can be used to directly compare different sce-
narios and parameter sets in view of the output variables (see below).

5.2. Comparison to other approaches

To date, two other models for estimating lepidopteran larvae mor-
tality caused by Btmaize pollen have been published (see Introduction):
the EFSA model (EFSA, 2015; Perry et al., 2010, 2012) and the
BtButTox model (Holst et al., 2013a,b). Like the EFSA model, LepiX can
be used to take various distances to the Bt maize field into account. All
three models use a dose-response curve to calculate mortality and do
not consider sub-lethal effects. In contrast to the EFSA model (Perry
et al., 2012), LepiX does not make any assumptions on the distribution
of host plants, butterfly populations or adoption of Bt maize cultivation.
Any comparisons of LepiX to the EFSA model must therefore be made to
the present EFSA local model (EFSA, 2015).

Only the BtButTox and LepiX models simulate the temporal coin-
cidence of larvae and maize pollen. To do so, an insect module and a
deposition module are required. Holst et al. (2013b) used a full-scale
insect model requiring detailed biological input, whereas we reduced
biological input data used in LepiX to reflect the lack of availability of
detailed data on, e.g. the lifespan or the pre-oviposition period, for most
butterfly species. Instead, the phenology module of LepiX is mainly
driven by a simple degree-days model and relies on field observation
data on the adult flight period, which is available for many species. A
single observation of the flight activity of a species can also be used to
derive accumulated degree-days sums for a species if weather data for
the region can be obtained. Although larval development is variable
and in part dependent on environmental and genetic factors (Friberg
et al., 2011; Saastamoinen et al., 2013), degree-days calculation are
useful for predicting phenology of butterflies across species (Cayton
et al., 2015).

The BtButTox model does not include a distance relationship of the
deposition of maize pollen and the maize field. By contrast, both the
current EFSA model (EFSA, 2015) and the LepiXmodel use, in principle,
the same distance relationship of Hofmann et al. (2014).

Compared to other approaches, LepiX uses the so far most compre-
hensive set of field data to estimate pollen deposition on plant leaves
and is the only model that accounts for the variability of pollen on
leaves. Compared to Holst et al. (2013b), who approximated pollen
deposition on leaves using Durham samplers that operated over one
single year and in one single location in Japan (Kawashima et al.,
2004), both the LepiX and EFSA models derive pollen deposition on
leaves from long-term monitoring data obtained using standardized
technical samplers (Hofmann et al., 2014). To translate pollen counts
from technical samplers to acceptor specific pollen deposition on leaves
of specific host plants, we followed the approach of Hofmann et al.
(2016) who experimentally compared the efficacy of different sampling
methods and thus was able to calibrate PMF measurements to in-situ
field measurements of pollen deposition on host plant leaves. In con-
trast to the EFSA model (EFSA, 2015), this has the advantage of re-
placing expert estimates with field data. In addition, we included the
variability of pollen deposition among leaves. As dose-response effects
are basically non-linear, it is important to consider this variability ex-
plicitly for a reliable risk assessment.

The results of modelling larval mortality using the LepiX and
BtButTox models can only be partially compared because the con-
ceptual models and the model formulations differ. The results of the
two models for I. io are in good agreement in that they predict no ap-
parent mortality for the first generation of I. io regardless of the chosen
climatic data. Similar to the BtButTox results of Holst et al. (2013b), the
lack of mortality effects predicted by LepiX can be explained by the lack
of overlap between pollen shedding and larval occurrence. For the
second larval generation in Rheinfelden, however, the importance of
this overlap is reflected in the sensitivity analysis of model parameters,
which stresses the importance of the beginning of the larval period for
the prediction of mortality. With identical dose-response parameters
(slope=−1.76; LC50= 451 pollen/cm2), the LepiX model predicts
28% mortality for I. io larvae feeding on host plants at the field edge

Fig. 6. Simulation results for a slope of −0.84, a distance to the maize field of 0.2 m and
an LC50 of 451 pollen/cm2 (mean mortality value: ca. 25%; see Fig. 4). (a) Histogram of
the mean mortality values from 1000 simulated populations; (b) histogram of the total of
1000×1000 simulated individuals; (c) and (d) examples of individual mortalities for two
particular simulated populations (both simulated for identical input parameter settings).
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(0.2 m). This value is on the lower end but within the range of the
estimates (28–86%) of Holst et al. (2013a,b), taking into account dif-
ferent assumptions for pollen deposition rates of the BtButTox model.

With parameter settings for the dose-response similar to those of the
EFSA model (slope=−0.84; LC50= 5800 pollen/cm2), the LepiX
model predicts 6.9% mortality for I. io larvae feeding on host plants at
the field edge (0.2 m). Although a direct comparison of estimates with
the current version of the EFSA model (EFSA 2015) is difficult, we can
compare the estimates indirectly by using suggested mitigation mea-
sures to keep mortalities of larvae< 1%. To achieve this threshold,
EFSA (2015) recommends isolation distances of 5m to 20m, depending
on the parameter setting. Our results for I. io are in keeping with this;
LepiX predicts a mortality of I. io of 0.9% at a distance of 20m and a
moderately higher mortality of 1.7% at a distance of 5m from the
maize field. It is important to note, however, that some butterfly species
have a higher sensitivity to MON810 pollen (Cry1Ab toxin). For native
species in Europe this has been demonstrated, e.g. for the protected
Common Swallowtail (Papilio machaon L.) (Lang and Vojtech, 2006) or
for the diamondback moth Plutella xystostella. Especially P. xystos-
tellahas been reported to be highly sensitive to Cry1 and thus will better
perform as a surrogate for highly sensitive species (Felke et al., 2002;
Wolt et al., 2005). Using the EFSA correction factor of 31.05 (Perry
et al., 2010) to adjust the toxin concentration from Bt176 pollen to
MON810 pollen, the LC50 value of P xystotella larvae (L4) is estimated
to be 595 pollen/cm2 (Felke et al., 2002), and larger isolation distances
will apply for the risk management (see Table 2).

5.3. Implications of uncertainty

Although the output of LepiX is in agreement with previous calcu-
lations, the modelling results also highlight the importance of input
data for the model outcome. To date, the scientific discussion in this
context has mainly focused on exposure estimates (EFSA, 2015, 2016b;
Hofmann et al., 2014, 2016; Kruse-Plass et al., 2017; Perry et al., 2013),
and it is agreed that the exposure estimate will have a strong influence
on any model predicting the effects of the exposure of non-target or-
ganisms to Bt pollen. However, our simulations demonstrate that both
LC50 and the slope of the dose-response curve strongly influence mor-
talities and thus envisaged risk management measures. These findings
agree with those of Perry et al. (2012), who stressed the importance of
these parameters for the EFSA model. As has been shown in Figs. 4 and
5 both the slope and the LC50 value of the dose response as well as the
timing of larval development will influence the mortality estimate.
Imprecisions in these model parameter, in consequence, will affect not
only the mortality estimate but also any risk management measure
using this estimate.

In our case example, a less-steep slope (−0.84) of the dose-response
curve caused higher mortality of I. io larvae, regardless of the assumed
LC50 value or the distance to the maize field. Compared to a steep slope,
a less-steep slope will increase the mortality estimate if the environ-
mental concentration of the stressor (Bt protein in pollen) is lower than
the LC50 value. As the distance relationship of maize pollen follows a

power function, larger distances will increase the probability that ex-
posure levels are below the LC50, even for highly sensitive species. In
our case example, this can be illustrated by comparing the mortality
estimates for different slopes at a given distance. Assuming an LC50

value of 1351 pollen/cm2, the less-steep slope (−0.84), in comparison
to the steeper slope (−1.76), results in about a 4-, 30-, 97-, and 220-
fold increase in mortality for distances of 0.2, 10, 100 and 500m, re-
spectively. Our modelling results affirm the use of less-steep slope es-
timates for the risk assessment in order not to underestimate effects
(Perry et al., 2010). This may also be reasonable as the influence of sub-
lethal effects, such as reduced weight (and presumably fitness) or
prolonged developmental time on individual fitness or population
growth, have not yet been included in simulation models.

To date no standardized ecotoxicity testing for Lepidoptera exists
which takes exposure of larvae to toxic pollen into account. The lack of
agreed methodology causes considerable uncertainties which have been
addressed in detail in Lang and Otto (2010). In fact, in experiments
carried out to determine LC50 values for Bt toxins and Lepidoptera,
some of the used experimental parameters, such as exposure time, the
time of mortality readings or the lack of secondary stressors, have been
criticized to underestimate real effects (Lang et al., 2011). As LepiX can
rely only on available data this uncertainty has to be addressed in the
final risk assessment and risk management.

Provided that suitable data exist, some uncertainties in LC50 values
can be addressed by the use of species sensitivity distributions
(Posthuma et al., 2002). This approach has been followed in the current
EFSA model (EFSA, 2015; Perry et al., 2012) and is useful for esti-
mating, e.g. effects on species of conservation concern for which eco-
toxicological data are lacking.

Both LC50 and slope estimates, and to a minor extent estimates of
larval phenology, will influence risk management measures. We illus-
trate this in Table 2, which provides isolation distances, based on LepiX
calculations, needed to obtain mortality estimates for I. io larvae<1%
(see above). When the steep slope is used, changes in the LC50 value do
not alter isolation distances greatly, i.e. all distances lie within one
order of magnitude. When the gentler slope in LepiX is used, however,
isolation distances greatly increase to roughly two orders of magnitude.
A less-steep slope and the uncertainties in LC50 values resulted in es-
timated isolation distances range from 20m to 2000m.

5.4. Implications of individual and population variability

The individual-based LepiX model provides especially insight into
the variation in mortality to be expected for a single larva or single
populations. Such analyses are useful when impacts on protected but-
terfly species need to be taken into account. Many protected species
have a limited potential for recovery and are already under threat by
multiple stressors (EFSA, 2016a). In addition, many of these species are
rare and only occur in small populations and thus are highly vulnerable
to extinction. For this reason, the relevant protection goal may need to
focus on single populations, or in the case of highly protected species,
on single individuals of a population. The variability of the mortality

Table 2
Consequences of uncertainties in biological data for risk management measures (isolation distances) to minimize risks for Inachis io 2nd generation larvae (protection level 1% mortality)
from Bt maize (MON810) cultivation: Influence of dose-response parameters and hatching time. Values: isolation distances [m] from the nearest maize field.

Dose-response slope=−1.76 Dose-response slope=−0.84

Start 2nd larval generation Start 2nd larval generation

LC50 value [pollen/cm2] 1 July 10 July 20 July 1 Aug 15 Aug 1 July 10 July 20 July 1 Aug 15 Aug

5800 0.2 0.2 0.2 0.2 0.2 5 15 20 10 2
2972 0.2 0.5 0.5 0.2 0.2 20 50 60 30 5
1351 1 2 2 1 0.5 70 180 300 120 15
451 5 10 10 10 5 200 1500 2000 900 120
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rates on the population level varied from 0 to 50% (Fig. 6a), the
variability on the individual level was much higher (Fig. 6b). Although
the overall average mortality rate determined in our case example was
about 25%, random effects alone can lead to quite different outcomes
for the same specific input parameter set in different model populations
as demonstrated in Fig. 6c and d. Therefore, it may be misleading to
consider only average mortality rates, especially in the context of
conservation of single individuals or populations.

6. Conclusions

We present LepiX as a versatile tool to assist the risk assessment and
risk management of Bt maize effects on non-target Lepidoptera. The
model balances the need for detailed biological data while offering a
high degree of stochasticity to account for the natural variabilities for
all three model components: i) pollen deposition and exposure, ii)
larval phenology and iii) larval mortality. LepiX allows modelling the
effect of larval phenology on the likelihood of exposure to maize pollen
and can be used to derive risk management measures in terms of iso-
lation distances. However, the definition of such distances will depend
on the amount of uncertainties that regulators and risk managers are
willing to accept. A sensitivity analysis of our model implementation for
I. io revealed a prominent influence of both LC50 value and the slope of
the dose-response equation on the mortality estimate. This stresses the
importance of obtaining reliable, more standardized, toxicity data be-
fore any decision can be made on the risk assessment and risk man-
agement prior to market release of Bt maize (Lang and Otto, 2010).
Although this has been realized by the EFSA GMO panel (Perry et al.,
2012) as the EU regulatory authority, very few data, especially on non-
pest species, are available in technical dossiers or in public literature.
Our results strongly speak in favour of reliable ecotoxicological data
that “… should be routinely calculated and reported, together with estimates
of their variability” (Perry et al., 2012). Without reliable data, un-
certainty in risk management measures can be high and respective
measures can be difficult to defend.

The individual-based approach provides insights in the variability of
mortality estimates of individuals or single populations and stresses
that mortality in single populations or of individuals can be sub-
stantially higher than the average model predictions. This aspect has so
far not been fully taken into account in the assessment of risks for
highly protected butterfly species and may stimulate the scientific
discussion on alternative approaches to the current risk assessment
practice of protected species (EFSA, 2015). LepiX will be further de-
veloped and is not restricted in its applications to GMOs. The model
design might also be useful in a wider context for different crop plants,
toxicants and non-target species. In principal, the conceptual model and
its modules are suited for simulating any effect of a toxic component in
pollen, such as pesticide residuals from systemic insecticides.
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