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Abstract Cry protein expressing insect-resistant trait is mostly
deployed to control major devastating pests and minimize reli-
ance on the conventional pesticides. However, the ethical and
environmental issues are the major constraints in their accep-
tance, and consequently, the cultivation of genetically modified
(GM) crops has invited intense debate. Since root exudates of
Bacillus thuringiensis (Bt) crops harbor the insecticidal protein,
there is a growing concern about the release and accumulation
of soil-adsorbed Cry proteins and their impact on non-target
microorganisms and soil microbial processes. This review per-
tains to reports from the laboratory studies and field trials to
assess the Bt toxin proteins in soil microbes and the processes
determining the soil quality in conjunction with the existing
hypothesis and molecular approaches to elucidate the risk
posed by the GM crops. Ecological perturbations hinder the
risk aspect of soil microbiota in response to GM crops.
Therefore, extensive research based on in vivo and interpreta-
tion of results using high-throughput techniques such as NGS
on risk assessment are imperative to evaluate the impact of Bt
crops to resolve the controversy related to their commercializa-
tion. But more studies are needed on the risk associated with
stacked traits. Such studies would strengthen our knowledge
about the plant-microbe interactions.
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Introduction

Globally, the major concern is food security for the current
century (Fitter 2012). Agriculture sector has been revolution-
ized through the application of genetically engineered crops
that offer immense benefits in terms of improved yield, nutri-
tional security, and resistance to environmental stresses
(Pontiroli et al. 2007). The plantation involving genetically
modified (GM) crops could be raised to 181 mha by 2014;
>100-fold rise over 1.7 mha since 1996 James 2014). Among
the widely used GM traits, herbicide tolerant (HT) and insect
resistant (IR) are ones. These traits provide growers with ben-
efits of increased yield, lesser insecticide application, and sim-
plified weed control management with fewer and more flexi-
ble herbicide applications. Herbicide (glyphosate) tolerance,
the most common trait, covers maximum acreage for corn,
cotton, soybean, and sugarbeet, and the insect resistance traits
in corn and cotton. Despite unabated adoption of GM crops,
the global debate concern their impact on the environment
with regard to the potential gene flow, weediness or invasive-
ness of GM plants, and the possible impact on the non-target
organisms (Johnson et al. 2006).

Notably, Bacillus thuringiensis (Bt) and its insecticidal
toxins have been globally used in pest control in maize
(Ostrinia nobilalis, Ostinia furnacalis, Spodoptera frugiperda,
Diatraea spp., Helicoverpa zea, and Diabrotica sp.) and in
cotton (Heliothis sp. and Helicoverpa sp.). However, their
adoption is stringent in majority of EU countries where only
Bt maize designated to produce Cry1Ab is commercially cul-
tivated as the crops contain insecticidal toxic proteins and their
interactions with non-target organisms warrant risk assess-
ments. Most countries have regulatory bodies (EPA, CFIA,
CONABIA, ANZFA, BRAI, APHIS, FDA, etc.) and other
specific multidisciplinary inter-institutional advisory groups to
assess and resolve the scientific and technical issues through
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interactions with the GMOs advisory committee (Craig et al.
2008). Field and laboratory trials involved risk assessment of
GM crops related to the non-target organisms (Icoz and Stotzky
2008a). However, the conclusions derived from such studies
remain still controversial. For instances, Icoz et al. (2008) re-
ported no effects on soil microbial enzymes and properties
while Chen et al. (2012) advocated negative effect on soil mi-
crobial and biochemical processes affected by Bt corn. It is
expected that transgenic technology get speedy and the newer
transgenic technologies for instance stacked traits are intro-
duced. The environmental risk assessment studies determine
the possible extent of stacked gene interaction and also the
non-target biota that might emerge following cultivation (De
Schrijver et al. 2007).

Soils represent a dynamic ecological system characterized
by diverse and interacting microbial populations (Singer and
Munns 1999). The complexity of soil system hinders risk
assessment related to genetically modified crops. The intimate
effects of plants on the soil microbiota are on record by many
(Brimecombe et al. 2001; Marschner et al. 2001), and many
techniques are available to monitor the impact of environmen-
tal or anthropogenic factors on the soil ecosystems. The plant-
associated microbial community is diverse and the informa-
tion on microbial responses to environmental changes and
perturbations limited (Knief 2014). Genomic studies using
restriction fragment length polymorphism (RFLP) and dena-
turing gradient gel electrophoresis (DGGE) face financial and
technological limitations in achieving in-depth information on
plant-microbe interactions under a set of conditions (Lindahl
et al. 2013). The Next Generation Sequencing (NGS) over-
comes many such time-consuming steps of conventional
Sanger sequencing. It offers sequencing of a large number of
clones to the extent of 106, relying on the DNA extracted
(Pauwels et al. 2015). Recent studies deployed NGS-based
meta-genomic approach for microbial communities in varied
habitats (Mardis 2008; Gloor et al. 2010; Bartram et al. 2011;
Delmont et al. 2011; Sangwan et al. 2013; Verbruggen et al.
2013) to strengthen the knowledge about microbiota sys-
temics. The pyrosequencing offers huge coverage of genome
and seems more reliable and informative over others
(Dinsdale et al. 2008; Amend 2010). For further reduction in
sequencing costs, the Illumina platform used recently gener-
ates larger data (Gloor et al. 2010; Caporasoa et al. 2011; Soni
et al. 2015) that surpass 454 GFLX data sets by over an order
of magnitude in terms of number of sequences per sample
coast (Shendure and Ji 2008). The risk assessment studies
on GM crop involving NGS system are less (Hur et al.
2011; Lee et al. 2011; Verbruggen et al. 2012; Kuramae
et al. 2013; Dohrmann et al. 2013; Valverde et al. 2014).
The major utility of such a cutting age technology could be
in deciphering the fate of Cry toxin and their interactions with
the soil microbes. Therefore, the application of NGS technol-
ogy may significantly contribute to our existing knowledge of

possible fluctuations in soil microbiota at the genomic level as
determined by CryAc-expressing plants.

The last decades witnessed enormous researches on the
interaction of soil bacterial, fungal, and actinomycete commu-
nity with GM crop (Griffiths et al. 2006, 2007; Oliveira et al.
2008). Icoz and Stotzky (2008a, 2008), and Icoz et al. (2008))
reviewed the impact of Bt crops on soils. The latter covered
Cry proteins and belowground organisms, existence of such
proteins in soil, and the techniques and the indicators avail-
able. It is suggested that the deployment of insect-resistant Bt
crops with selected Bt proteins had little or even no impact on
targets like woodlice, collembolans, mites, earthworms, nem-
atodes, protozoa, and various soil enzymes, and thus offers an
alternative to broad-spectrum insecticides. However, the infor-
mation on the interactive effects of Bt crops with symbiotical-
ly microorganisms is still scanty. Arbuscular mycorrhizal fun-
gi (AMF) and endophytes may enhance the suitability of their
hosts through facilitating nutrient acquisition as well as pro-
tection from insect, pests, and pathogens (Verbruggen et al.
2013). The possible interactions between Bt crops, AMF, and
endophytes are, however, little understood.

The present review summarizes the update on the assess-
ment of environmental risks and the fate of Bt crops in the soils
with special reference to insecticidal Bt toxins, produced by
engineered plants. It is imperative to understand the possible
interactions with factors in the soil ecosystem. The future chal-
lenges in the transgenic technology including stacked genes, the
associated endophytes, and their potential for the accumulation
of various bioactive metabolites have also been highlighted.

Routes of Cry proteins exposure to soil
microorganisms

The potential adverse impact of Bt crops on soil microbial
community may arise through different routes. Some soil mi-
croorganisms thrive in close association with the plants or plant
debris in the field, andmay thereby be exposed to Cry protein in
Bt plants (Fig. 1). Transgenic Bt plants may also release their
engineered products (Cry proteins) into the soil via root exu-
dates that may actively persist therein (Saxena et al. 2002).
Several studies suggested that the potential fraction of carbon
fixed during photosynthesis is released into the rhizosphere by
roots, whose composition and quantity is plant species specific
(Berg and Smalla 2009). Plants and soils interact via roots ex-
udates, along with the plant residues collectively that act as the
main C source for microbes. Therefore, GM crops, in line with
other crop, are likely to regulate the soil microbial structure and
functions. The foremost mechanism through which GM crops
affect the soil microbiota could be via intentional or uninten-
tional changes in root-exudate quantity and quality (Hannula
et al. 2012). The latter does not only affect root-exudates com-
position (sugars, organic acids, and amino acids) but also the
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toxins as introduced via GM. The novel compound(s) in root
exudates of the transgenic plants also offered selective advan-
tage to the specific domain of soil bacteria that feed over these
(Savka and Farrand 1997). Such substances may affect soil
microorganisms even after the plants were removed, and may
possibly alter populations of plant-beneficial- (PGPR) or plant-
pathogenic microorganisms.

The different routes of Cry proteins exposure may have
varied effects on soil microorganisms that may be (1) direct
one through exposure to released transgene products that may
still persist in the soil and (2) close contact with the plant litter
or the post-harvest crop residues. These have the potential to
significantly change the plant-microbe interacting zone (rhi-
zosphere/endosphere), microbial dynamics, soil biodiversity,

and nutrient mineralization. While the restricted pesticide use
in case of Bt cotton varieties is beneficial, little is known about
the potential non-target effects of Bt cotton plants on the soil
microbiota and associated biological processes critical for
sustained crop productivity and ecosystem health. Several in-
vestigations on structural and functional compositions of mi-
crobial communities as affected by the associated Bt crops are
also covered in the present compilation.

Persistence of Cry proteins in soil

The exposure of soil microbes to Cry proteins varies and the
persistence of the latter is regulated by soil type, pH,

Fig. 1 Possible Cry protein
transport routes from the plant to
soil environment and proposed
approach that could be used to
study the plant-microbe
interaction in response to GM
crops
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temperature, and other physicochemical and biological char-
acteristics as advocated in the review by Icoz et al. (2008)).
Similar conclusions were also drawn by Feng et al. (2011) and
Singh et al. (2013b) while working on Bt maize (Cy1Ab) and
Bt brinjal (Cry1Ac), respectively. Apart from the single trait, a
study (Chen et al. 2011) used stacked traits (insect resistance
conferring toxin-CpTi, a small polypeptide Bowman-Birk
type of double-headed serine protease inhibitor) along with
Cry1Ac protein and revealed that the concentrations of
Cry1Ac and CpTI proteins in soils of transgenic cotton are
relatively higher over its non-transgenic counterpart. The out-
come of such studies supports that crop variety, soil physico-
chemical and biological attributes may affect the soil degra-
dation of Cry proteins. The observations on the fate of soil Cry
proteins based on laboratory and field trials are listed
(Table 1). It is clear from the observations presented in
Table 1 that the possible reason for the presence of soil Cry
proteins is still debated. Although researchers covered the
specific components of soil Cry toxin including the entry,
persistence, degradation, and genetic modifications, for the
interdisciplinary and systematic study, it is still awaited.

Various salts and hydroxides in soil may alter Cry proteins
levels in the ecosystem. Studies revealed that Bt toxins in the
soils and soil lead the former to get promptly adsorbed on to
the clay component (Zhou et al. 2007) and humic acids
Muchaonyerwa et al. 2006). The soil accumulation of Bt
toxins depends on their adsorption onto soil components and
the bioavailability. Adsorption is very crucial in deciding the
persistence of Cry proteins into the complex soil matrix, and
little understood. Pagel-Wieder et al. (2007) indicated that the
surface assimilation of Cry1Ab protein decreased with the
increasing concentrations of Na-montmorillonite. The in-
crease in specific surface area and charge density of soil par-
ticles improved Bt toxin adsorbtion (Helassa et al. 2009).

Some recent attempts developed the molecular biology-
based approaches to understand the interactions of Cry pro-
teins with the soil particles (Table 1). Some dealt with insight
into the adsorption mechanism using Cry1Ab protein as the
model (Madliger et al. 2010; Sander et al. 2010; Madliger
et al. 2011; Tomaszewski et al. 2012) and suggested that the
non-uniform surface charge distribution of Cry 1Ab gave rise
to patch-controlled electrostatic attraction of Cry1Ab towards
the surfaces that carried the same net charges as applicable to
protein. Cry1Ab adsorption on to humic substances also had a
strong contribution from the hydrophobic effect. These find-
ings indicate that soil pH, ionic strength, and the polarity of
soil organics strongly affect the Cry1Ab fate in soils. A higher
Cry1Ab mobility and bioavailability is expected with increas-
ing pH and ionic strength. The bioassay revealed comparable
growth inhibition of Ostrinia nubilis by Cry1Ab absorbed on
to soils and to major mineral, and the organic soil constituents
along with the solubilized Cry1Ab (Tomaszewski et al. 2012).
Therefore, the adsorbed Cry1Ab is to be considered in every

aspect while assessing the fate and impact of Cry1Ab in the
soil environment.

Interaction of Bt crops with soil microbiota

It is expected that Cry protein expressing Bt crops may exert
some effects, may be positive or negative on soils, both in
term of biomass and activity. Studies related to population
density and the effects ranging from “transient” to “no” are
compiled in Table 2. Xue et al. (2005) observed gram-positive
to gram-negative bacteria ratio lowered for soils with Bt maize
compared to near-isogenic non-Bt maize, contrary to the
higher ration for soils with Bt potato. However, no differences
were found in the fungal/bacterial population ratio for soils
having Bt and non-Bt maize or those with Bt and non-Bt
potato. Rui et al. (2005) reported increased number of
culturable bacteria (potassium-dissolving, inorganic phos-
phate-dissolving, nitrogen-fixing) in rhizosphere soils of
non-Bt cotton over soils with Bt cotton during the initial and
middle plant growth stages. However, the differences were
quite small in the following growing season. WeiXiang et al.
(2004)) reported some occasional, prominent variations in the
colony-forming units (CFU) of aerobic bacteria, actinomy-
cetes, fungi, anaerobic fermentative, denitrifying, hydrogen-
producing acetogenic, and methanogens in paddy soils with
Bt-transgenic rice (Cry 1Ab protein) straw and the non-Bt rice
straw during early incubations. Such variations could be at-
tributed to alterations in the nutritional makeup of transgenic
rice straw due to the transgene. There was prominent lowering
in the bacterial and actinobacterial population in Bt cotton
soils over the non-Bt cotton counterpart (Tarafdar and
Rathore 2012). However, the fungal population remained un-
affected by the Bt cotton. By contrast, several studies indicat-
ed no effect of Bt crop on the microbial population (Kapur
et al. 2010; Pangrikar et al. 2014; Zhang et al. 2014). Saxena
and Stotzky (2001)) reported insignificant differences in
CFUs of culturable bacteria (including actinomycete), fungi,
protozoa, and nematodes in rhizosphere soils of Bt and non-Bt
corn or among those added with the Bt and non-Bt corn bio-
mass. Singh et al. (2012) observed that the inclusion of peanut
and farm yard manure for Bt cotton crops enhanced the
microbial population and could even mask the essence of Bt
toxin. Singh et al. (2013a, b, 2014) observed paramount de-
cline in actinomycete, bacterial, and fungal population size in
the Bt brinjal-planted soils relative to non-Bt brinjal soils.
Their population size estimate restricted to the flowering stage
revealed the major but transient effect of developmental stages
of the genetically modified brinjal crop.

The obligate biotrophic AMF may be at the high risk cov-
ering non-target impacts of transgenic Bt crops owing of their
close association with the plant roots. Although Bt proteins
get expressed in roots of most Bt maize lines Saxena et al.
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Table 1 Summary of the Cry proteins persistency in soil

Bt crop/protein Experimental condition/soil condition Inferences References

Bt maize, Bt cotton,
and Bt potato; Cry1

Ab, Cry1Ac and Cy3Aa

Laboratory condition; biomass of Bt
cotton, maize, and potato amended
in soil

No accumulation of protein in soil; proteins
degraded in soil with ½ life of 20 days

Ream et al. (1994)

Bt cotton; Cry1Ab
and Cry1Ac

Laboratory condition; purified
protein or biomass of Bt cotton
amended in soil

Purified protein and the Bt cotton protein
were encountered up to 28 and 56 days,
respectively

Donegan et al. (1995)

Bt maize; Cry 1Ab Laboratory condition; soil amended
with biomass of Bt maize

50 % Cry1Ab protein activity decrease in
1.6 days and 90 % decrease in 15 days

Sims and Holden (1996)

Bt cotton; Cry 2A Laboratory condition; biomass of
Bt cotton amended in soil

½ life of Cry 2A activity was estimated at
15.5 days

Sims and Ream (1997)

Bt cotton; Cry 2A Field condition; Bt cultivation ½ life of Cry 2A activity was estimated at
31.7d

Sims and Ream (1997)

Cry 1Ab Laboratory condition; purified
protein amended in soil

After 234 days, protein still detectable in soil Tapp and Stotzky (1998)

Bt cotton, Cry 1Ac Field condition; Bt cotton cultivation Not detected Head et al. (2002)

Bt maize; Cry 1Ab Laboratory condition; soil with Bt
maize or biomass of Bt maize
amended in soil

Cry1Ab protein released from root exudates
and in plant biomass of Bt maize persisted
up to 180 and 350 days, respectively

Saxena and Stotzky (2002)

Bt maize; Cry 1Ab Laboratory and field condition;
biomass of Bt maize amended in
soil or Bt maize cultivation for
4 years

Cry 1Ab protein of Bt maize did notcontinue
in soil

Hopkins and Gregorich (2003)

Bt maize; Cry 1Ab Laboratory condition; biomass of
Bt maize amended in soil

Protein persisted in the soil due to the clay
particles and not accessible for microbial
digestion

Muchaonyerwa et al. (2004)

Bt maize; Cry 1Ab Field condition; Bt maize cultivation Protein detected from Bt maize litter persisted
up to least 8 months

Zwahlen et al. (2003a, b)

Bt maize; Cry 1Ab Field condition; Bt maize cultivation No recovery of protein Baumgarte and Tebbe (2005)

Bt maize; Cry 1Ab Field condition; Bt maize cultivation No persistence for 3 years Dubelman et al. (2005)

Bt cotton; Cry proteins Laboratory condition; Bt
cotton cultivation

Altering levels of Bt toxin persist in the Bt
cotton rhizospheric soils

Rui et al. (2005)

Bt maize; Cry 3Bb1 Field condition; Bt maize cultivation No observable level of protein in soil during
3 consecutive yrs

Ahmad et al. (2005)

Bt rice; Cry 1Ab Laboratory and field condition;
biomass of Bt rice amended and
Bt rice cultivation

The ½ life of protein in Bt rice straw
(4 % ww−1) amended alkaline soils soil
was 11.5 days and for acidic soils it was
34.3 days

Wang et al. (2006)

Bt maize; Cry1Ab

and Cry 1Ac Field condition; Bt cultivation Degradation rate of Cry1Ac toxin varied in
the soil types (sandy loam and clay)

Marchetti et al. (2007)

Bt maize; Cry 1Ab Field condition; Bt maize cultivation Protein recovered in soils even after 4 years
of successive cultivation

Sun et al. (2007)

Bt maize; Cry 3Bb1 Laboratory condition; soils amended
with biomass of Bt maize

Protein was recovered up to 21 days in soils
amended with monmorillonite and 40 days
in soils amended with kaolinite (K); after
adjustment of pH of the K soils to ca.7,
protein was detected for only 21 days

Icoz and Stotzky (2008a)

Bt cotton; Cry1Ac Field and lab incubation condition;
Bt cotton soils amended with
leaves of Bt cotton

Bt cotton toxin decomposes fewer in soil
(0.003 μg/g); Bt leaves are more recalcitrant
due to low mineralization rate

Das et al. (2009)

Bt maize; Cry 1Ab Laboratory condition; molecular
study for understanding the
forces governing the adsorption
of Cry 1Ac protein

Uneven surface charge dispersion of
Cry1Ab led patch-controlled electrostatic
attraction with sorbents that carried the
same net charge as Cry1Ab

Sander et al. (2010)

Bt maize; Cry 3Bb1 Field condition; Bt maize cultivation Cry3Bb1 protein does not accumulate in soil Miethling-Graff et al. (2010)

Bt maize; Cry 1Ab Field condition; Bt maize cultivation Cry 1Ab protein concentration increase
initially (6–9 weeks) after incorporation of
plant biomass into the soil and degrade
slowly after 12–15 weeks; Cry1Ab protein
does not accumulate in soil after addition the
soil from Bt maize planted soil

Badea et al. (2010)
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2004; Icoz and Stotzky 2008b), the direct role of Cry proteins
in AMF is still ambiguous. Some studies reported reduced
AMF colonization of Bt maize line (Bt 11) (Castaldini et al.
2005; Cheeke et al. 2011) and Bt 176 (Turrini et al. 2004)
expressing Cry1Ab, while others observed no difference for
Bt maize encoded with same protein (MON810, Cry1Ab) (de
Vaufleury et al. 2007) or even Bt cotton with other Bt proteins
(Cry1Ac and Cry2Ab) (Knox et al. 2008). Noticeably, these
studies were based on varied experimental conditions and
AMF inocula, Bt cultivar, Cry protein, fertilizer level, and
harvest time, and the observations were inconclusive.
However, under similar environmental condition, low level
of AMF colonization is reported in different Bt maize roots
compared to non-Bt ones (Cheeke et al. 2011; 2013). The
outcome stated the possibility of pleiotropic and certain type
of genetic changes that influence crop physiology (i.e., sugar
allocation, enzyme activity in roots, lignin content, etc.) may
affect the ability of selected lines of Bt maize to form associ-
ations with AMF. However, another study reported that
Cry34/35Ab1 proteins expressing Bt (DAS-59122-7 event)
maize may negatively affect the initial development of AMF
under field conditions (Cheeke et al. 2012, 2013), but the
effect was not observed during the last two sampling dates
(82 and 135 days). The probable reason for this inconsistency
is still unknown (Seres et al. 2014).

The evaluation by de Souza Vieira et al. (2011) of the
impact on endophytic fungi associated with leaves, stem,
and roots of Cy1Ac expressing Bt cotton revealed Bt modifi-
cations to have no impact on the endophytes, while the tissue
and plant stage significantly affected the fungal community
composition. Such observations were corroborated by others
wherein low levels of endophyte infection in Bt tissues was

not due to the direct effect of Cry protein on the fungi, but the
indirect one following Bt gene incorporation (Suryanarayanan
et al. 2011).

Changes in population density/diversity indices might not
always elucidate the changes in ecosystem function as soil-
microbe interaction and soil function are complex and far
from clear (Nielsen et al. 2011). Therefore, still more func-
tional aspects of the taxonomic groups have to bemonitored in
parallel with the diversity estimations. Moreover, it is neces-
sary to combine such parameters as the single index for mean-
ingful information on diversity and functional attributes.

Impact of Bt crops on soil microbial community
structure

Many laboratory and field trials on the impact of transgenic
crops on soil biota considering the different variables and
techniques for evaluating the risk on community structure
are given in Table 3. Most such studies used culture-
dependent approach, such as substrate utilization pattern
(i.e., BIOLOG) and culture-independent ones, such as
DGGE, T-RFLP, and SSCP (Liu et al. 2008; Tan et al.
2010). However, the results were invariably inconsistent as
the effects ranged from no to minor transient changes
(Blackwood and Buyer 2004; Brusetti et al. 2004; Devare
et al. 2004; Fang et al. 2005, 2007). Studies based on above
techniques revealed minor or no Bt gene expressing specific
effects on soil microbial community, and the age and plant
type and other environmental factors (soil texture, soil pH,
moisture, redox potential, N concentration, temperature, pre-
cipitation, etc.) dominantly determined the microbial

Table 1 (continued)

Bt crop/protein Experimental condition/soil condition Inferences References

Bt cotton, Cry 1Ac
and CpTi proteins

Field condition; Bt cotton cultivation Cry 1Ac and CpTi proteins persisted in the
soil and their content differ in the transgenic
cotton-planted soil

Chen et al. (2011)

Bt maize (Cry1Ab) Field condition; Bt maize cultivation
and harvested and straw were dried

Cry1Ab released from straw were decline at
early stages but a slow decline at middle and
late stages of Bt corn; in the late stage (180
days after the experiment commenced)
0.03–1.51 % and 0.02–0.91 % of initial
Cry1Ab protein released from 34B24 and
1246 1482 straw was detected in soil

Feng et al. (2011)

Cry 1Ab Laboratory condition; insect bioassay,
adsorption of Cry1Ab to humic
acid and fulvic acid

Cry1Ab retains insecticidal activity over
short-term sorption-desorption cycles to
humic acids highlights the need to include
SOM-adsorbed Cry proteins in the
assessment of the environmental fate and
potential risks of Cry proteins

Tomaszewski et al. (2012)

Bt brinjal, Cry1Ac Field condition; Bt brinjal cultivation Cry1Ac protein content detected up to
0.6 ng g−1 during flowering stage of
consecutive two year Bt brinjal cropping

Singh et al. (2013b)
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Table 2 Summary of the effect of Bt crops on soil microbial population

Site/Crop Organism Findings References

USA; Bt (Cry1Ac) and non-Bt
maize

Culturable bacteria and fungi Substantial but temporal increase in
numbers in soil with Bt cotton; no
response on bacteria and fungi
compared to control

Donegan et al. (1995)

Hermiston Agricultural Research
and Extension Center,
Hermiston, Oregon. USA; Bt
(Cry3A) and non-Bt potato

Culturable aerobic bacteria and fungi Minimum alteration in population load
were encountered

Donegan et al. (1996)

Agricultural field of East Marion,
Long Island, New York; Bt
(Cry1Ab) and non-Bt maize

Culturable bacteria, fungi, protozoa,
nematodes, and earthworms

Insignificant variation in microbial
population size between Bt and non-
Bt maize biomass amended soils or
in rhizospheric soils of respective
soils

Saxena and Stotzky (2001)

Bt (Cry1Ab, Cry3A and Cry4) and
non-Bt

Bacteria, fungi, and algae No reaction on the microbial
development were observed

Koskella and Stotzky (2002)

Experimental site of Londrina, PR,
Brazil; Bt (Cry1Ab) inocula
infesting soybean crop

Heterotrophic bacterial and
saprophytic fungal populations and
carbon-cycling microorganisms
(cellulolytic, amylolytic, proteolytic)
and arbuscular mycorrhizae

No reaction on the populations when
compared to non-inoculated soil;
temporal variation in population size
compared to non-inoculated soil. No
response on arbuscular mycorrhizae
population size when inoculated
with ICP protein but inhibition of
fungal colonization was observed
when inoculated with spores of Btk

Ferreira et al. (2003)

Experimental rice field at Zhejiang
University, Hua-jia-ci Campus,
Hangzhou, China; Bt (Cry1Ab)
and non-Bt rice

Culturable bacteria including
actinomycetes and fungi

No detrimental reactions on population
load

WeiXiang et al. (2004)

Field of the Inner Mongolia
Autonomous Region north
China and Chinese Academy of
Agricultural Sciences, Beijing,
China, Bt (Cry1Ab) and non-Bt
maize

Culturable bacteria and fungi Low proportion of gram positive to
gram negative bacteria in Bt maize-
planted soil; no variation in bacterial
and fungi population load

Xue et al. (2005)

Bt (Cry 3A) and non-Bt maize and
soil with Bt and non-Bt potato

Culturable bacteria and fungi Large proportion of gram-positive to
gram-negative in Bt potato-planted
soil compared to non-Bt potato-
planted soil, and no alteration in the
ratio of fungi to bacteria was
encountered

Xue et al. (2005)

Experiment Station of China
Agricultural University, Beijing,
China; Bt (Cry1Ac) and non-Bt
cotton

Culturable functional bacteria
(potassium-dissolving bacteria,
inorganic phosphate-dissolving
bacteria, and nitrogen-fixing
bacteria)

Elevated population load of functional
bacteria in non-Bt cotton soil
compared to Bt cotton in early and
middle cotton growth stages;
insignificant differences in
population size followed by growing
season

Rui et al. (2005)

Farm, Long Island, New York,
USA; Transgenic (Cry gene))
plant of corn, rice, canola,
tobacco, cotton and tomato and
their non-Bt counterparts

Field trial; population density of
bacterial including actinomycetes
and fungi using CFU method on soil
extract agar and Rose-Bengal-
streptomycin agar

Insignificant variation Flores et al. (2005)

Experimental field of Department
of Crop Plant Biology,
University of Pisa, Pisa, Italy;
Bt (Cry1Ab) and non-Bt maize;

Microcosm study; culturable
heterotrophic bacteria and
mycorrhizae

Low intensity of mycorrhizal infection
by Glomus mosseae in transgenic
maize

Castaldini et al. (2005)

Rosemount Experiment Station of
the University of Minnesota; Bt
(Cry1Ab and Cry 3Bb1) and
non-Bt maize

Field trial; microbial populations No persistent significant reaction on
population size of culturable
bacteria, gram-negative bacteria,
chitin- and cellulose-utilizing
bacteria, nitrifiers, denitrifiers,
protozoa, and fungi

Icoz et al. (2008)
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Table 2 (continued)

Site/Crop Organism Findings References

Australian Cotton Research
Institute (ACRI), Narrabri,
NSW, Australia; Bt cotton
(Cry1Ac and Cry2Ab) and
conventional varieties

Field trial; mycorrhizal colonization
assessment

Genetic modification did not pose
negative effect onAMF colonization

Knox et al. (2008)

Bt maize (Cry 1Ab protein) and
their isogenic non-Bt maize
lines

Field trail; culturable aerobic bacteria,
fungi and actinomycetes

No significant variation was
encountered on the microbial
populations

Oliveira et al. (2008)

Agricultural field Boading, Hebei
Province, China; Bt cotton (Cry
1A and CpTI) and non-Bt
cotton

Field trial; Quantification of N2 fixing,
inorganic-PO4, organic-PO4, and K
dissolving bacteria using respective
media for CFUs count

Numerous year of Bt cotton cropping
may not affect the bacterial load

Hu et al. (2009)

Agricultural field Hotala,
Maharashtra, India; Bt cotton
(Cry) and non-Bt cotton

Field trial; total bacterial, fungal, and
actinomycetes population using
SCDA and TSA culture media for
CFUs

No variation were encountered the
population load of microbes

Kapur et al. (2010)

Agricultural farm of Baibi town,
Henan Province, China; Bt
cotton (Cry1Ac) and non-Bt
cotton

Field trial; culturable bacteria, fungi,
and azotobacter

Prominent effect of natural factors
compared to genetic transformation

Li et al. (2011)

Portland State University,
Portland, USA; Bt 11 maize
(Cry1Ac) and parental iso-lines

Greenhouse microcosm; Mycorrhizal
fungal colonization assessment

No changes in AMF colonization was
observed between the Bt 11 and the
following maize cultivars

Cheeke et al. (2011)

Experimental farm of Central
Institute of Cotton Research,
Nagpur, India; Bt (Cry) and its
isogenic non-Bt cotton

Field study; infection frequency of
endophytes were calculated from
different plant healthy tissue

No variation in endophytes numbers
obscured from the respective plants;
Bt cotton receive low infection
frequency

Suryanarayanan et al. (2011)

Federal Rural University of
Pernambuco (UFRPE), Recife-
PE, Brazil; Bt (Cry1Ac) and
non-Bt cotton

Isolation of endophytes using PDA
media and microscopicobservation
of fungal structure

The most periodic fungal endophyte
were Phomopsis archeri from leaves
(22.9 %) and stems (16.8 %) and
Phoma destructive from roots
(11 %) from both the cotton
genotypes; the cotton tissue and the
plant developmental stage
significantly affected the diversity
and composition of the fungal
community compared to Bt
modification

de Souza Vieira et al. (2011)

Portland State University,
Portland, USA; Multiple Bt
maize (Cry1Ab; Cry34/35Ab1;
Cry3Bb1; Cry1F) and parental
iso-lines

Greenhouse microcosm; mycorrhizal
fungal colonization assessment

Bt maize receive minor intensity of
AMF colonization in their roots
compared to counterpart parental
lines; reductions in colonization
were not related to the Bt protein

Cheeke et al. (2012)

Indian Agricultural Research
Institute, New Delhi, India; Two
cropping systems sole Bt cotton
(Cry), cotton+peanut)

Enumeration of total bacterial, fungal
and actinomycetes population using
soil extract agar, Martin’s Rose agar
and Kuster’s agar media,
respectively

No negative response of transgenic
cotton on soil microbial population

Singh et al. (2012)

Agricultural land of Vidarbha,
Maharashtra, India; Bt cotton
(Cry 1Ac) and non-Bt cotton

Field trial; total bacterial, fungal, and
actinomycetes population

Bacterial (85.9×106 CFU g−1 in non-
Bt cotton and 73.7×106 CFU g−1 in
Bt cotton) and actinomycetes
(52.5×105 CFU g−1 in isogenic
counterpart and 43.6×105 CFU g−1

in Bt cotton) population
significantly decreased under Bt
cotton compared to non-Bt cotton

Tarafdar and Rathore (2012)

Experimental field, Indian
Agricultural Research Institute,
New Delhi, India; Bt cabbage
(Cry) and non-Bt cabbage

Pot experiment; Total bacterial,
actinomycetes, fungi, and phosphate
solubilizing using CFU method

No significant changes on bacterial,
actinomycetes, fungal, and
phosphate solubilizing bacterial
population between the Bt and its
counterpart

Dutta et al. (2012)
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community (Blackwood and Buyer 2004; Baumgarte and
Tebbe 2005; Fang et al. 2005; Icoz et al. 2008; Chen et al.
2011). Liu et al. (2008) reported that KMD1(Bt) rice express-
ing Cry1Ab did not have pronounced adverse effect on bac-
terial and fungal community or their vital processes, and also,
the variations in the rhizosphere associated-soil microbial
community outweigh the application of triazophos and
Cry1Ab modifications over 2 years of rice cropping.
Miethling-Graff et al. (2010) observed no significant differ-
ences between the rhizosphere bacterial community structure
of Bt maize and other cultivars over three consecutive years of
study. Also, the bacterial and fungal community composition
did not differ between Myxococcus xanthus protoporphyrin
oxidase (Mx PPO) transgenic and non-transgenic parental rice
at the seedling, tillering, heading, or maturing stage over two
successive years of cultivation (Chun et al. 2012). However, a
few studies reported significant differences in microbial com-
munity structure between soils with Bt and non-Bt planted
crops (Lu et al. 2010; Tan et al. 2010). Castaldini et al.
(2005) observed consistent and significant differences in the
composition of soil microbial community with regard to Bt or
non-Bt maize. Lu et al. (2010) observed minor effects of Cry1
Ab modification in the Xiushui 11 rice genome on the residue
decomposition-associated bacteria or fungi during a 2-year
study. Similarly, Wei et al. (2012) reported minor impact on
the rhizosphere-associated bacterial, fungal, and actinomycete
community. Singh et al. (2013a, b, 2014) observed actinomy-
cete, bacterial, and fungal groups exclusively restricted to
plant flowering andmaturation stages, suggesting the transient
effect of Cry1Ac compared to crop growth stages during
2 years of trial. The contrasting observations on the impact
of Bt crops on the associated soil microbes may possibly

reflect differences in the type of Cry protein, plant variety,
and the experimental methods applied along with the soil type
and the environmental factors (Ciccazzo et al. 2014). The
species and functional variations in soil microbial community
is influenced by many direct and indirect environmental fac-
tors. The direct effects depend on both: the range of activity of
proteins encoded by the transgenes (Oger et al. 1997) and their
amount accumulating in the environment. In comparison, the
indirect effects are possibly mediated by fluctuations in the
chemical composition of plant biomass and root exudates
resulting from modifications in the normal metabolic path-
ways of the plant.

Apart from the external soil biota, endophytes are well
known for their plant beneficial potential (Sessitsch et al.
2004; Berg et al. 2005). The expression of Cry protein might
lead to modifications in the plant metabolite composition that
induces alterations in the associated endophytic community
compared to the nearly isogenic wild-type. Nevertheless, stud-
ies on GM crops associated endophytes are relatively rare
(Heuer et al. 2002; Rasche et al. 2006). Recent studies under
the containment on two different soils compared the endo-
phytic bacteria in three transgenic Bt maize lines
MON89034 (cry3Bb1), MON88017 (cry1A105 and
cry2Ab2), and the stacked event MON88017×MON89034
(cry1A105 and cry2Ab2, cry3Bb1) with the respective near-
isogenic line, and plants of three additional, conventional
maize lines. The endophyte community associated with the
Bt lines was closely related with isogenic lines suggesting that
both the soil environment and plant cultivar were the major
determinants of endophytic bacteria (Prischl et al. 2012).
Recently, comparative study using modern high-throughput
techniques (454 GFLX sequencing and T-RFLP) revealed

Table 2 (continued)

Site/Crop Organism Findings References

Agricultural Field of Indian
Institute of Vegetable Research,
Varanasi, India; Bt Brinjal
(Cry1Ac) and non-Bt brinjal

Field trail; total actinomycetes bacterial
(16S rRNA) and fungal (ITS rRNA)
population load

Actinomycetes and bacterial
population load were significantly
reduced under the soil planted with
Bt brinjal compared to non-Bt
brinjal; effect of Cry1Ac gene was
masked by crop growth stages

Singh et al. (2013a, b, 2014)

Experimental field of Central
Institute of Cotton Research,
Nagpur, India; Bt (Cry1Ac) and
non-Bt Cotton

Field trial; bacterial, actinomycetes,
fungal, and functional microflora
population enumeration

Bacterial and fungal population were
significantly greater in Bt cotton
owing to the crop type; no effect of
of genetic transformation was
observed

Velmourougane and Sahu
(2013)

Experiment field near Corvallis,
OR, USA; Multiple Bt maize
(Cry1Ab; Cry34/35Ab1;
Cry3Bb1; Cry1F) and parental
iso-lines

Field trial; mycorrhizal fungal
colonization assessment and spore
density

No effect of genetic modification on
the colonization of AMF in G. max
in field condition

Cheeke et al. (2013)

Experiment field of Julianna-
major, Nagykovácsi, Hungary;
Bt maize (Cry34/35Ab1) and
near isogenic non-Bt maize

Field trial; AMF colonization
assessment

Negative effect on the development of
AMF

Seres et al. (2014)
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Table 3 Summary of the effect of Bt crops on soil microbial community structure

Site/ Crop Experimental design Findings References

Experimental field of Salisbury,
Marlboro, Australia; Bt corn
(Cry) and non-Bt gene

Growth chamber experiment:, PLFA
and CLPAwere used to asses
community structure

Response of Bt corn was small and
temporal

Blackwood and Buyer (2004)

Vegetable farm of Cornell
University, New York;
Transgenic Bt corn (Cry 3Bb)

T-RFLP for bacterial community
analysis

No impact on soil bacterial community
structure

Devare et al. (2004)

Agricultural field sites, Sachsen-
Anhalt and Nordrhein-
Westfalen, Germany; Bt–maize
hybrid MON810 (Cry1Ab)

Field trial, bacterial community
structure analysis using 16S rDNA-
SSCP

Cry1Ab protein recovered in MON810
soil; minor effect on bacterial
community structure compared to
natural factors

Baumgarte and Tebbe (2005)

Bradford Agronomy Research
Center’ USA; Bt maize and
non-Bt maize

Field trial and green house study;
biolog, bacterial community
structure analysis using 16S rDNA-
DGGE

Bacterial communities affiliated with
rhizospheric soil affected by soil
texture compared to crop varieties

Fang et al. (2005)

Greenley Agricultural Experiment
Station USA; Bt maize and non-
Bt maize

Field trial and microcosm study;
biolog, bacterial community
structure analysis using 16S rDNA-
DGGE

Addition of Bt residue containing
prominent lignin and lignin/N ratio
in soil incomparably influenced the
microbial composition compared to
the residue of its counterpart

Fang et al. (2007)

Department of Crop Plant Biology,
University of Pisa, Italy and
field of The Centro
Interdipartimentale di Ricerche
Agro Ambientali, Pisa, Italy; Bt
corn (Cry1Ab) and non-Bt corn

Microcosm and greenhouse
experiment; 16S rDNA–DGGE for
eubacterial community

Model study revealed variation in
rhizospheric eubacterial
communities; greenhouse
experiment showed differences
between Bt and non-Bt corn plants
in rhizospheric heterotrophic
bacterial communities and
mycorrhizal colonization

Castaldini et al. (2005)

Agricultural field Zhejiang
province, China; Bt rice (Cry
1Ab) (Bt,), non-Bt (Ck) and
non-Bt with triazophos (Ckp)

Field trial, DGGE and T-RFLP for
compare bacterial and fungal
compositions

Seasonal variations affects bacterial
composition compared to genetic
modification

Liu et al. (2008)

Agriculture field of Suwon,
Kyonngi Province and Yesan,
Chungnam Province, Korea

Field trial; 16S rDNA-DGGE profile
for bacterial communities

Genetic transformation did not pose
negative impact on bacterial
composition

Jung et al. (2008)

Agricultural field Hotala,
Maharashtra, India ; Bt cotton
(Cry) and non-Bt cotton

T-RFLP for bacterial community
analysis

Bt cotton cultivation did not pose
negative impact of bacterial
diversity

Kapur et al. (2010)

Agricultural field Wurzburg,
Bravia, Germany; Bt maize
(event MON88017 Cry 3Bb1
and CP4 EPSPS) and three non-
Bt cultivar

Bacterial community analysis by SSCP
of 16S rRNA

No significant differences in bacterial
communities between Bt maize and
other cultivar

Miethling-Graff et al. (2010)

Experimental field of South China
Agricultural University, China;
Two transgenic Bt corn hybrids
( Cry1Ac and Cry1A,
respectively) and their near-
isolines

Field trial; 16SrRNA and 18S rRNA
PCR-DGGE profile for bacterial and
fungal community, respectively

No variation in the microbial
community structure between the Bt
corn hybrids and its counterpart

Tan et al. (2010)

Zhejiang University’s Research
farm, Zhejiang Province, China;
Bt rice (Cry 1Ab) and non-Bt
rice

Field trial, T-RFLP analysis of bacterial
and fungal community analysis

No significant differences in the
bacterial and fungal composition of
Bt rice and non-Bt rice

Lu et al. (2010)

Experimental farm, Zhejiang,
China; Two transgenic lines
(Cry1Ab) (HC and TT) and
non-transgenic parental
varieties Jiazao 935 (JZ) and
Minghui 63(MH), and non-
transgenic distal parental rice
varieties Zhongjiu B (ZJ) and
9311

16S rRNA–DGGE for bacterial
community analysis

Vegetation and straw amendment of
transgenic lines did not have
negative effect on the bacterial
communities

Fang et al. (2012)
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no pronounced effect of Cry1Ab toxin expressing Bt corn on
the AMF (Verbruggen et al. 2012).

Response of microbial processes to Bt crops in soil

With the emergence of molecular techniques, it is possible
to retrieve the specific microbial groups as affected by Bt
crops. However, the functional role of microbes in soils for
growing Bt crops could be better defined by the processes
they impart. Enzymatic activities, microbial biomass, res-
piration, CO2 evolution, etc. could be the better parameters
to decipher the impact of GM crops on the functional as-
pects of soil microbial processes (Icoz et al. 2008).
Previous studies demonstrated effect, ranging from “no”
to “minor” and “significant,” of GM crops on the microbial
community (Stotzky 2004; Rui et al. 2005; Xue et al. 2005;
Shen et al. 2006; Sun et al. 2007; Icoz et al. 2008; Chen
et al. 2011; Tarafdar and Rathore 2012). Some studies
highlighted the input of transgenic crops on dehydroge-
nase, invertase, acid phosphomonoesterase, urease, cellu-
lase, etc. (WeiXiang et al. 2004; Flores et al. 2005; Icoz
et al. 2008; Hussain et al. 2011; Chen et al. 2011, 2012) in
soils under field and laboratory conditions. Some studies,

however, indicated insignificant differences in the activity
of phosphatases and catalase in soils planted with Bt and
non-Bt maize (Flores et al. 2005; Lang et al. 2006; Icoz
et al. 2008). WeiXiang et al. (2004) observed no apparent
variation in neutral phosphatase in soils supplied with Bt
and non-Bt rice straw. While dehydrogenase activity was
significantly higher (~1.95-fold) in soils with Bt-transgenic
straw from d7 to d14 but not from d21 to d49 over the soils
treated with the non-Bt counterpart (~1.5-fold). The possi-
ble reason could be the alterations in the nutritional
quality/quantity of the transgenic rice straw owing to the
expression of the Cry1Ab protein. Similarly, Liu et al.
(2008) also observed no significant difference in enzyme
activities in the rhizosphere of transgenic Bt rice and non-
parental rice under field and laboratory conditions as well
indicating that crop growth effect could have masked the
effect of genetic modifications. In contrast, a few studies
reported significant impact of Bt crops on soil enzymes.
Flieβbach et al. (2012) reported reduction (5 %) in the soil
dehydrogenase activity for Bt maize varieties compared to
non-Bt counterpart under experimental field conditions
suggesting that the anticipated changes in the plant com-
position due to transformation could modify the soil-
mediated processes. Similar result was also observed under

Table 3 (continued)

Site/ Crop Experimental design Findings References

Experimental field, Shanghai
Academy of Agricultural
Sciences, Shanghai, China; Bt
rice (Cry1Ac) and non-Bt rice

DGGE for bacterial, fungal and
actinobacterial community
Composition

Bt rice pose little effect on the
dominant rhizospheric microbial
community structure

Wei et al. (2012)

Agricultural Field of lower
Austria, Austria; Bt maize
Cry1A105, (Cry2Ab2, and
stacked genes carrying proteins
Cry3Bb1, cry1A105 and
Cry2Ab2) and their isolines

Culture-dependent technique; culture-
independent technique via T-RFLP
of 16S rRNA of endophytes

Study revealed the influence of both
the soil type and plant cultivar on
endophytes irrespective of genetic
transformation

Prischl et al. (2012)

Agricultural field of Netherland;
Bt maize (Cry1Ab) and non-Bt
maize

Field trial; 454 pyrosequencing and T-
RFLP of AM fungi

Non-uniform differences were
encountered between the AMF
associated with Bt and non-Bt
maize; transient changes in AM
community was more compared to
the genetic modification of the
maize crop

Verbruggen et al. (2012)

Agricultural Field of Indian
Institute of Vegetable Research,
Varanasi, India; Bt Brinjal
(Cry1Ac) and non-Bt brinjal

Field trial; 16S, ITS rRNA- PCR
cloning for actinomycetal, bacterial
and fungal community

Exclusive actinomycetal and bacterial
community detected during
flowering and maturation stages;
genetic modification effect was
minor and transient compared to
crop developmental stages

Singh et al. (2013a, b, 2014)

Agricultural field of Netherland;
Bt maize (Cry1Ab) and non-Bt
maize

Field trial; 454 pyrosequencing of
fungal community

Detected large groups of AM fungal
and basidiomycota; however, no
significant differences in soil fungal
diversity and community structure
associated with different plant
cultivars were observed

Kuramae et al. (2013)
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Table 4 Summary of soil microbial processes over Bt crops

Site/crops Experimental variables/microbial
parameters

Findings References

Experimental rice field of Zhejiand
University, China; transgenic
rice (Cry1Ab) and non-
transgenic rice

Field trial; determination of soil
dehydrogenase and neutral
phosphatase enzyme activity

Substantial difference in the soil
dehydrogenase activity between the
Bt and its counterpart

WeiXiang et al. (2004)

Vegetable farm of Cornell
university, New York;
transgenic Bt corn (Cry 3Bb)

Field trial; N mineralization, microbial
biomass N and C, soil respiration

No detrimental effects of Bt born on N-
mineralization, MBC and soil
respiration

Devare et al. (2004)

Experimental field of university of
Missouri, USA; Bt (Cry) maize
hybrids and their non-transgenic
isolines

Field trial and laboratory-scale N-
mineralization and lignin content

No effect on N dynamics in laboratory
and field condition; non-uniform
variation in N-mineralization rate

Mungai et al. (2005)

Experimental field of Chinese
Academy of Sciences, China;
Bt-transgenic cotton (Cry1A)
and non-Bt cotton

Field trail; enzymatic activities in soil Except dehydrogenase, activities of
other enzymes decline. No negative
effects of Bt cotton on the soil
enzymes of Bt and non-Bt cotton-
planted soils

Shen et al. (2006)

Experimental field of Chinese
Academy of Science; Bt-
transgenic cotton (Cry1A) and
non-transgenic Cotton

Field trial; analysis of Bt toxin
concentration and enzyme activities
in soil

Soil urease, phosphomono-esterase,
invertase and cellulase were
accelerated by the addition of Bt
cotton tissues

Sun et al. (2007)

Vegetable Farm of Freeville, New
York; Bt corn and non-
transgenic isoline

Field trial; microbial biomass, N-
mineralization

No negative reaction of Bt maize on
microbial biomass and other soil
processes

Devare et al. (2007)

Experimental station of University
of Minnesora; Bt corn varieties
with either of Cry1Ab and
Cry3Bb

Field trial; soil enzymes No uniform variation in the processes
of soil enzymes under Bt maize

Icoz et al. (2008)

Research farm, Indian Agricultural
Research Institute, New Delhi,
India; Bt cotton (Cry) and
isogenic non-Bt cotton

Field trial; soil respiration, soil
dehydrogenase activity

Significant reduction in the soil
respiration (−3.5 %) and
dehydrogenase (−17 %) under Bt
cotton rhizosphere soil

Sarkar et al. (2008)

Agricultural field Zhejiang
province, China; Bt rice Cry
1Ab (Bt,), non-Bt (Ck) and non-
Bt with triazophos (Ckp)

Field trial; soil dehydrogenase, soil
neutral phosphatase activity

No variation in the enzymatic activities
between the rhizosphere soil of Bt,
Ck, and Ckp over cultivation period

Liu et al. (2008)

University of Nebraska-Lincoln
West Central Research and
Extension Center, NE, USA; Bt
corn (Cry1Ab) hybrids and their
non-Bt isolines

Field trial; decomposition rate for
leaves, cobs, and stalks using litter
bag technique

No variation in the rates of
decomposition and biomass C left
over between the Bt and non-Bt corn
residues

Tarkalson et al. (2008)

South Dakota State University’s
Dakota Lakes Field Station,
USA; Four Bt corn hybrids and
isogenic-non-Bt corn

Field trial; decomposition rate of
residues using litter-bag technique

Decomposition rate is constant
(0.25 day−1) for all varieties; no
variation in the composition of Bt
and non-Bt residues

Lehman et al. (2008)

Kellogg Biological Station long-
term ecological research
(LTER), Michigan, Bt corn
(Cry1Ab) and non-Bt corn

Field trial; C mineralization Continuous cropping of Bt corn did not
affect C mineralization

Kravchenko et al. (2009)

Experimental farm of Indian
Agricultural Research Institute,
New Delhi, India; Bt (Cry1Ac)
and non-Bt cotton

Field trail; decomposition of Bt cotton
leaf using incubation method

Cry1Ac protein decomposes into the
soil, due to the recalcitrant nature
they remain into the soil compared
to the non-Bt cotton leaf

Das et al. (2009)

Experimental farm of University
of Maryland Research and
Education Centre, MD, USA;
Bt corn hybrid (Cry3Bb1) its
isogenic non-Bt corn, including
other untreated negative control
lines

Field trial; enzyme assays from
detrimental organic matter
estimation

Bt corn had no significant impact on
extracellular enzymes activities

Lawhorn et al. (2009)

University of Fort Hare (UFH)
Research Farm, Province of

Field trial; decomposition rate of maize
residues using litter-bag technique

No considerable concentration of Cry
1Ab protein was recovered. The

Daudu et al. (2009)
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Table 4 (continued)

Site/crops Experimental variables/microbial
parameters

Findings References

South Africa; Bt-maize
(Cry1Ab) and its near-isogenic
line

results revealed that Bt-maize
residues degrade at a similar rate as
of other maize cultivars, and that the
recovery of the free Cry1Ab protein
in soil could be minimal

Experiment field of Swiss plateau,
Switzerland; Bt (Cry1Ab and
Cry 3Bb1) and their respective
maize isolines

Field trial; leaf residue decomposition
using litter bag technique

No variation in the trend of
decomposition rate of Bt and non-Bt
maize; no negative effects of Bt
maize on the decomposition rate

Zurbrügg et al. (2010)

Experiment site of Shenyang
Agricultural University, China;
three pairs of cotton—Bt cotton
(Cry1Ac) with its isogenic,
CpTI + (transgenic Bt+CpTI
cotton; non-transgenic
Bt+CpTI cotton with its
isoline), CpTI + + (transgenic
Bt+CpTI cotton; non-
transgenic Bt+CpTI cotton with
its isogenic)

Pot experiment; microbial biomass
carbon (MBC); various soil
enzymes

Soil enzymes activities (besides urease
and phosphodiesterase) greatly
reduced in toxin producing cotton
soils; consecutive cultivation of
transgenic cottons might pose
adverse impact on soil microbial and
biochemical properties

Chen et al. (2011)

Macdonald Research Farm, Ste.
Anne de Bellevue, Quebec,
Canada, USA; Bt (Cry1Ab) and
non-Bt maize

Field trial; aerobic soil incubation,
lignin-derived phenol analysis

Genetic modification elevated CO2

production from stem-amended soils
and reduced N mineralization in
root-amended soils

Yanni et al. (2011)

Experiment farm of Cornell
University’s Musgrave New
York; Bt corn (Cry3Bb) And
non-Bt corn

Field trial; decomposition of maize
cob, shoots, and roots using litter
bag technique, lignin concentration

Corn residue decomposition was not
influenced by Cry3Bb toxin;
although, environmental factors led
to variation for most variables
measured

Xue et al. (2011)

Indian Agricultural Institute, New
Delhi, India; two cropping
systems, Sole Bt cotton (Cry),
cotton+peanut)

Field trial; dehydrogenase activity No impact Singh et al. (2012)

Agricultural land of Vidarbha,
Maharashtra, India; Bt cotton
(Cry 1Ac) and Non-Bt cotton

Field trail; microbial C, N, P; soil
dehydrogenase, esterase, acid and
alkaline phosphatase, and phytase
enzyme activity

Significant reduction in the microbial
biomass under Bt cotton; significant
reduction in dehydrogenase, acid
phosphatise, phytase, and
nitrogenase enzymes under Bt
cotton compared to its counterpart

Tarafdar and Rathore
(2012)

Agricultural field of Shanxi
University, China; Bt cotton
(Cry1Ac) and conventional
variety near isogenic to Bt
cotton

Field trial; soil protease, urease, alkali
phosphatase, sucrase, and
dehydrogenase; nutrient content
determination

Negative impact on soil enzymes and
soil nutrient

Yang et al. (2012)

Experimental farm, Zhejiang,
China; Two transgenic lines
(HC and TT) and non-
transgenic parental rice varieties
Jiazao 935 (JZ) and Minghui 63
(MH), and non-transgenic distal
parental rice varieties Zhongjiu
B (ZJ) and 9311

Field trial; soil enzymes (catalase,
urease, neutral phosphatase, and
invertase)

Insufficient detrimental response on
soil enzymes due to transgenic rice
lines compared to parent rice
varieties

Fang et al. (2012)

Experimental field, Shanghai
Academy of Agricultural
Sciences, Shanghai, China; Bt
rice (Cry1Ac) and non-Bt rice

Field trial, soil protease, urease,
sucrase, dehydrogenase, catalase,
and polyphenol oxidase

No variation in dehydrogenase,
invertase, phenol oxidase, acid
phosphatase, urease, and protease
between Bt and its counterpart

Wei et al. (2012)

Agricultural field of Shenyang
Agricultural University,
Liaoning province, China; Two
Transgenic varieties: Bt (Cry)

Field trial; soil microbial biomass
(MBC) and soil enzymes

Sequential cropping of transgenic
cotton posses adverse impact on
microbial activities and enzyme
activities in Bt cotton rhizospheric

Chen et al. (2012)
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Bt cotton-planted soil (Beura and Rakshit 2013). Sun et al.
(2007) reported stimulations in soil urease, acid phospho-
monoesterase, invertase, and cellulose activities through
additions of Bt cotton straw, attributable to the increased
microbial activity. Studies on the effect of microbial
activity for elucidation of soil health associated with Bt
crops are listed in Table 4. Sarkar et al. (2008) reported
significant difference between Bt and its near-isogenic
non-Bt cotton. Similarly, Tarafdar and Rathore (2012)) re-
ported reductions in activities of soil dehydrogenase, acid
phosphatase, phytase, and nitrogenase under Bt cotton
compared to non-Bt cotton indicating the possible inhibi-
tion of the microorganisms involved in the soil metabolic
activities.

In addition, indirect and pleiotropic effects induced due to
genetic modification have been widely addressed (Icoz et al.
2008; Turrini et al. 2015). Most of the studies targeted the
microbial-mediated processes such as decomposition and
mineralization (Table 4). However, relation between the Cry
protein and the crop residues remains to be verified.

Future perspectives and conclusions

The predicted climate models indicate global temperature rise
by 2 to 11 °F by 2100, depending on the extent of greenhouse
gas emissions (NRC 2010). Crops are therefore likely to en-
counter such environmental stresses and can lead to severe
consequences in terms of food security. For instance,

transgenic cotton expressing Bt insecticidal protein (Cry)
showed decline in the protein level at high temperatures, ele-
vated CO2, or drought, thus decreased pest resistance (Dong
and Li 2007). Therefore, studies have to focus on plant re-
sponses to multiple stresses. Cheeke et al. (2011) looked at
the fertilizer levels and Bt-trait interactions related to AMF.
The strong effect of soil fertilizer and spore density provided
some insight to explaining the diversity of AMF as observed
previously, and identified some vital environmental consider-
ations for evaluations in future.

Pest resistance arising through mutations in pests enables
them to knock out the resistance as conferred by the single Bt
trait (ISAAA Pocket K 42). Now, the combination or stacking
of different traits or genes in plants is rapidly getting popular
in the biotechnology of crop production. The transgenic tech-
nology of stacked traits has been applied by many for the pest
management; nevertheless, their soil persistence still remains
the major challenge. It will be interesting to look for the inter-
play between the stacking traits and soil components and to
know as to how the predominant adsorption mechanisms were
affected by stacked traits. For stacking the IR traits, the single
ones have extensively been assessed for evaluation of the
adverse side effects on the non-target organisms. Therefore,
stacked events need a specific risk assessment other than the
evaluation of their single transformation event (De Schrijver
et al. 2007; Hendriksma et al. 2012). In context of the risk
assessment of stacked traits containing transgenic crops, the
information available to date is very little (Chen et al. 2011;
2012; Prischl et al. 2012) and, therefore, warrants more study

Table 4 (continued)

Site/crops Experimental variables/microbial
parameters

Findings References

and CpTi (gene along with non-
Bt near isogenic lines

soils compared to non-Bt cotton
rhizospheric soils

Experimental field, Indian
Agricultural Research Institute,
New Delhi, India; Bt cabbage
(Cry) and non-Bt cabbage

Pot experiment; soil dehydrogenase
activity

Soil dehydrogenase activity varied
with respect to sampling date only;
no effect of Bt cabbage on soil
processes

Dutta et al. (2012)

Agricultural Field of Indian
Institute of Vegetable Research,
Varanasi, India; Bt Brinjal
(Cry1Ac) and non-Bt brinjal

Field trail; N-mineralization, soil
nutrients; organic C, soil moisture,
MBC, soil dehydrogenase, FDA,
invertase, urease and acid phosphor-
monoesterase

Significant reduction of organic C,
MBC, dehydrogenase and FDA
enzymes in Bt brinjal-planted soil
compared to non-Bt; Soil nutrients
and soil pH varied significantly
across the crop developmental
stages only

Singh et al. (2013a, b,
2014)

Experimental field, Central
Institute of Cotton Research,
Nagpur, India; Bt (Cry1Ac) and
non-B Cotton

Field trail; soil respiration, fluorescein
diacetate (FDA) hydrolysis, urease,
dehydrogenase, MBC

Soil respiration and FDA activity were
highest under Bt cotton soil>non-
Bt>control bulk soil; no adverse
effects of Bt cotton on microbial
processes

Velmourougane and Sahu
(2013)

Iowa State University Field
Extension Education
Laboratory Research, USA0; Bt
(Cry1Ab) and non-Bt maize

Field trial and laboratory incubation
study; decomposition rate of
residues using litter-bag technique

No effect on decomposition rate under
no-tillage in Bt and non-Bt crops

Al-Kaisi et al. (2013)
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for the biosafety assessment of GM crops harboring stacked
traits.

Another interesting approach would be to analyze the trans-
genic crops-associated endophytic microorganisms. Genome
analysis of endophytic microbes would enable us understand
the host-plant symbiotic relationship that may confer greater
fitness to plants to fully acclimatize the adverse conditions
(Kusari et al. 2012). There has been interest in the
bioprospecting of microbial endophytes (Strobel and Daisy
2003). Therefore, it seems imperative to evaluate the risks re-
lated to the endophytes and their response to transgenic crops.

Despite the better assessment of soil microbial diversity
through molecular tools and techniques, the correlation be-
tween microbial diversity and soil functionality remains large-
ly unclear. In some cases, the secondary (unexpected) effects
of genetic modifications are likely to remain undetected with-
out their assessment under experimental conditions simulating
natural soils. Root exudates are the important factors affecting
soil functions and microbial diversity. Recent study update for
monitoring of rhizodeposition using carbon labeling and sta-
ble isotope probing (SIP) has proven reliable for linking the
microbial activity and structure (Wu et al. 2009; Hannula et al.
2012). The in vivo technologies like FISH, phylogenetic
probes, etc., coupled with meta-genomics and meta-proteo-
mics/transcriptomics, would be more advantageous for
linking changes at the DNA/ mRNA level with the protein
expression. This approach is likely to offer a better under-
standing of the linkage between microbial diversity and soil
functionality. The objectives and parameters taken into con-
sideration should be relevant to the concerned environment so
that the consequences of GM crops could be understood. Most
studies centered on the “immediate effects”while the “delayed
effects” omitted. Investigations on the impact of GM crops on
soil biota and the consequent risk assessment should be con-
ducted for longer durations under natural conditions incorpo-
rating as many treatments as possible to clearly define the
baseline representative of the “natural variations,” and should
also well incorporate the non-genetically transformed control
plants as well as controls transformed using only genetic
markers. Therefore, the assessment strategies need some more
improvements. In the overall, case-by-case assessments of the
potential benefits and ecological and environmental risk of
each GM crop will be the most appropriate approach to ensure
the agricultural sustainability.
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