

SANTE DATA COLLECTION PLATFORM

Eradication: Final report for Rabies 2018

For each approved annual or multi-annual programme Member States shall submit to the Commission by the 30 April each year an annual detailed technical and financial report covering the previous year. That report shall include the results achieved and a detailed account of eligible costs incurred (Art 14 of Regulation (EU) No 652/2014).

This form is for information only, no submission possible.

ID: 20190409-RZO59P5C

Country code: LT

Reporting period

From: 2018 To: 2020 Year of implementation: 2018

1. Technical implementation of the programme

1.1 Description and evaluation of the evolution of the epidemiological situation, the technical implementation of the activities foreseen under the programme and the cost-effectiveness of the programme.

In 2018 only one case of rabies was detected in adult fox, which was found dead in Salcininkai region, in a proximity with the border with Belarus. No cases of rabies have been detected during 2016 and 2017. 2 cases of rabies were detected in October and November 2015 in Ignalina region, Utena county, in the distance of 300-500 m from the border with Belarus. Wild virus was detected for raccoon dog and fox respectively in the same village.

1.2 Details on the level of achievement of the targets set in the approved programme and technical difficulties.

The following activities have been carried out under the programme in 2018

Distribution of baist with vaccine against rabies have been carried out at the border with Belarus and Poland twice a year using aerial distribution of baits. Estimated optimal number per square kilometer is not less than 20 baits and the aircraft flying lines separated by 500 m. Vaccination territory is 20400 km2, number of baits per campaign 505000. Also the every batch of the vaccine was tested for vaccine efficiency. Monitoring of vaccination have been carried out by testing for the occurrence of a biomarker tetracycline, which is incorporated into the bait, in the target species - foxes and raccoon dogs, as well as sero-conversion rates in both age groups - adult and juvenille. Also, all animals suspected for rabies were tested. The delivery of found dead and hunted foxes and raccoon dogs was financed from the national

20190409-RZO59P5C Page 1/5

budget.

The autumn oral vaccination campaign have been prolonged due to military manouvres and ban of flights in the region.

1.3 Epidemiological maps for infection and other relevant data on the disease/activities (information on serotypes involved,...) (Please attach files of data using the PDF attachement feature) Use the textbox below to provide clarifications for the maps you attach, if needed.

In 2018 only one case of rabies was detected in adult fox, which was found dead in Salcininkai region, in a proximity with the border with Belarus. The coordinates of finding (54.176853, 25.712586 (WGS))

ANNEX VI TECHNICAL REPORT ON RABIES PROGRAMMES

VERY IMPORTANT: Please fill out the following tables with figures corresponding to measures performed during the implementing period (1/1 to 31/12).

Table A1 - TEST FOR THE MONITORING OF VACCINATION EFFECTIVENESS

Region	Species and age	Type of test	Test description	Number of tests	Number positive	% positive
Alytus	Foxes juvenile	Biomarker	Tetracycline in bones	16	13	81.25 %
Alytus	Foxes juvenile	Serological	VNT/FAVN/ELISA	1	0	0 %
Alytus	Foxes adult	Biomarker	Tetracycline in bones	7	7	100 %
Alytus	Foxes adult	Serological	VNT/FAVN/ELISA	19	8	42.11 %
Druskininkai	Foxes juvenile	Biomarker	Tetracycline in bones	9	8	88.89 %
Druskininkai	Foxes juvenile	Serological	VNT/FAVN/ELISA	2	0	0 %
Druskininkai	Foxes adult	Serological	VNT/FAVN/ELISA	6	3	50 %
Elektrėnai	Foxes juvenile	Biomarker	Tetracycline in bones	18	16	88.89 %
Elektrėnai	Foxes juvenile	Serological	VNT/FAVN/ELISA	1	0	0 %
Elektrėnai	Foxes adult	Biomarker	Tetracycline in bones	2	2	100 %
Elektrenai	Foxes adult	Serological	VNT/FAVN/ELISA	17	11	64.71 %
Ignalina	Foxes juvenile	Biomarker	Tetracycline in bones	29	27	93.1 %
Ignalina	Foxes adult	Biomarker	Tetracycline in bones	16	16	100 %
Ignalina	Foxes adult	Serological	VNT/FAVN/ELISA	43	8	18.6 %
Ignalina	Racoon dogs juvenile	Biomarker	Tetracycline in bones	5	4	80 %
Ignalina	Racoon dogs adult	Serological	VNT/FAVN/ELISA	4	0	0 %
Lazdijai	Foxes juvenile	Biomarker	Tetracycline in bones	32	22	68.75 %
Lazdijai	Foxes juvenile	Serological	VNT/FAVN/ELISA	1	0	0 %
Lazdijai	Foxes adult	Biomarker	Tetracycline in bones	9	8	88.89 %
Lazdijai	Foxes adult	Serological	VNT/FAVN/ELISA	27	5	18.52 %
Lazdijai	Racoon dogs juvenile	Biomarker	Tetracycline in bones	3	2	66.67 %
Lazdijai	Racoon dogs adult	Biomarker	Tetracycline in bones	1	1	100 %
Lazdijai	Racoon dogs adult	Serological	VNT/FAVN/ELISA	3	0	0 %
Marijampole	Foxes juvenile	Biomarker	Tetracycline in bones	30	27	90 %
Marijampole	Foxes juvenile	Serological	Tetracycline in bones	2	0	0 %
Marijampole	Foxes adult	Biomarker	Tetracycline in bones	19	18	94.74 %
Marijampole	Foxes adult	Serological	VNT/FAVN/ELISA	39	13	33.33 %
Marijampole	Racoon dogs adult	Biomarker	Tetracycline in bones	1	1	100 %
Marijampole	Racoon dogs adult	Serological	VNT/FAVN/ELISA	1	1	100 %
Molėtai	Foxes juvenile	Biomarker	Tetracycline in bones	25	12	48 %
Molėtai	Foxes juvenile	Serological	VNT/FAVN/ELISA	2	0	0 %
Molėtai	Foxes adult	Biomarker	Tetracycline in bones	13	11	84.62 %
Molėtai	Foxes adult	Serological	VNT/FAVN/ELISA	21	11	52.38 %
Molėtai	Racoon dogs juvenile	Biomarker	Tetracycline in bones	1	0	0 %
Molėtai	Foxes juvenile	Serological	VNT/FAVN/ELISA	1	0	0 %
Molėtai	Racoon dogs adult	Biomarker	Tetracycline in bones	1	1	100 %

20190409-RZO59P5C Page 2/5

Prienai	Foxes juvenile	Biomarker	Tetracycline in bones	19	12	63.16 %
Prienai	Foxes juvenile	Serological	VNT/FAVN/ELISA	3	1	33.33 %
Prienai	Foxes adult	Biomarker	Tetracycline in bones	2	2	100 %
Prienai	Foxes adult	Serological	VNT/FAVN/ELISA	11	3	27.27 %
Salcininkai	Foxes juvenile	Biomarker	Tetracycline in bones	37	32	86.49 %
Salcininkai	Foxes juvenile	Serological	VNT/FAVN/ELISA	1	1	100 %
Salcininkai	Foxes adult	Biomarker	Tetracycline in bones	10	9	90 %
Salcininkai	Foxes adult	Serological	VNT/FAVN/ELISA	40	17	42.5 %
Salcininkai	Racoon dogs juvenile	Biomarker	Tetracycline in bones	1	1	100 %
Salcininkai	Racoon dogs adult	Serological	VNT/FAVN/ELISA	1	0	0 %
Sirvintos	Foxes juvenile	Biomarker	Tetracycline in bones	16	12	75 %
Sirvintos	Foxes juvenile	Serological	VNT/FAVN/ELISA	5	0	0 %
Sirvintos	Foxes adult	Biomarker	Tetracycline in bones	3	2	66.67 %
Sirvintos	Foxes adult	Serological	VNT/FAVN/ELISA	9	2	22.22 %
Sirvintos	Racoon dogs juvenile	Biomarker	Tetracycline in bones	6	2	33.33 %
Sirvintos	Racoon dogs adult	Serological	VNT/FAVN/ELISA	2	1	50 %
Svencionys	Foxes juvenile	Biomarker	Tetracycline in bones	31	21	67.74 %
Svencionys	Foxes adult	Biomarker	Tetracycline in bones	10	10	100 %
Svencionys	Foxes adult	Serological	VNT/FAVN/ELISA	30	14	46.67 %
Svencionys	Racoon dogs juvenile	Biomarker	Tetracycline in bones	24	11	45.83 %
Svencionys	Racoon dogs adult	Biomarker	Tetracycline in bones	3	3	100 %
Svencionys	Foxes adult	Serological	VNT/FAVN/ELISA	15	8	53.33 %
Trakai	Foxes juvenile	Biomarker	Tetracycline in bones	33	31	93.94 %
Trakai	Foxes juvenile	Serological	VNT/FAVN/ELISA	23	11	47.83 %
Trakai	Foxes adult	Biomarker	Tetracycline in bones	7	7	100 %
Trakai	Foxes adult	Serological	VNT/FAVN/ELISA	15	10	66.67 %
Trakai	Racoon dogs juvenile	Biomarker	Tetracycline in bones	1	1	100 %
Trakai	Racoon dogs juvenile	Serological	VNT/FAVN/ELISA	1	1	100 %
Ukmerge	Foxes juvenile	Biomarker	Tetracycline in bones	17	11	64.71 %
Ukmerge	Foxes juvenile	Serological	VNT/FAVN/ELISA	9	0	0 %
Ukmerge	Foxes adult	Biomarker	Tetracycline in bones	3	2	66.67 %
Ukmerge	Foxes adult	Serological	VNT/FAVN/ELISA	4	0	0 %
Utena	Foxes juvenile	Biomarker	Tetracycline in bones	20	14	70 %
Utena	Foxes adult	Biomarker	Tetracycline in bones	10	9	90 %
Utena	Foxes adult	Serological	VNT/FAVN/ELISA	23	6	26.09 %
Utena	Racoon dogs juvenile	Biomarker	Tetracycline in bones	12	3	25 %
Utena	Racoon dogs adult	Biomarker	Tetracycline in bones	3	3	100 %
Utena	Racoon dogs adult	Serological	VNT/FAVN/ELISA	5	3	60 %
Varena	Foxes juvenile	Biomarker	Tetracycline in bones	42	36	85.71 %
Varena	Foxes adult	Biomarker	Tetracycline in bones	15	14	93.33 %
Varena	Foxes adult	Serological	VNT/FAVN/ELISA	50	8	16 %
Varena	Racoon dogs juvenile	Biomarker	Tetracycline in bones	4	3	75 %
Varena	Racoon dogs adult	Serological	VNT/FAVN/ELISA	3	0	0 %
Vilnius	Foxes juvenile	Biomarker	Tetracycline in bones	26	19	73.08 %
Vilnius	Foxes juvenile	Serological	VNT/FAVN/ELISA	7	5	71.43 %
Vilnius	Foxes adult	Biomarker	Tetracycline in bones	4	4	100 %
Vilnius	Foxes adult	Serological	VNT/FAVN/ELISA	17	7	41.18 %
Visaginas	Foxes juvenile	Biomarker	Tetracycline in bones	2	2	100 %
Visaginas	Foxes adult	Serological	VNT/FAVN/ELISA	2	2	100 %
Visaginas	Racoon dogs adult	Biomarker	Tetracycline in bones	1	0	0 %

20190409-RZO59P5C Page 3/5

Zarasai	Foxes juvenile	Biomarker	Tetracycline in bones	15	14	93.33 %
Zarasai	Foxes juvenile	Serological	VNT/FAVN/ELISA	6	3	50 %
Zarasai	Foxes adult	Biomarker	Tetracycline in bones	8	7	87.5 %
Zarasai	Foxes adult	Serological	VNT/FAVN/ELISA	14	2	14.29 %
Zarasai	Racoon dogs juvenile	Biomarker	Tetracycline in bones	14	6	42.86 %
Zarasai	Racoon dogs juvenile	Serological	VNT/FAVN/ELISA	2	1	50 %
Zarasai	Racoon dogs adult	Biomarker	Tetracycline in bones	3	3	100 %
Zarasai	Racoon dogs adult	Serological	VNT/FAVN/ELISA	8	2	25 %
Total			1,135	670	59.03 %	

Table A2 - SURVEILLANCE TESTS

Region	Animal species	Category	Test description	Number of tests	Number of cases
All Republic of Lithuania	Foxes	Passive	fluorescent antibody test (IF)	286	1
All Republic of Llthuania	Racoon dogs	Passive	fluorescent antibody test (IF)	69	0
Total	Total				

Number of rabies virus isolates typed for differentiation from vaccine	0
Typing results (please indicate the number of field strains/vaccine strains, and (optional) comment) $ \\$	0

Table B - WILDLIFE ORAL VACCINATION

Aerial distribution data files:

	Sent via post (USB, DVD, etc)	Will be presened to the responsible person during the PAFF meeting in May.
--	-------------------------------	--

Description of the analysis performed by the Competent Authority on the aerial distribution data and conclusions of the assessment for the quality of the distribution:

The operator has provided daily distribution reports with the number of distributed baits of every flight to the territorial SFVS, who supervised the oral vaccination campaign. Also the flight routes are checked by the responsible person of territorial SFVS. In general, in accordance with the calculation, the average density of distribution of baits is not less than 21 bait per sq. km.

Start date of First Campaign	15/4/2018	End date of First Campaign	23/5/2018
Start date of Second Campaign	28/9/2018	End date of Second Campaign	18/12/2018

Region/Area	Product used	Number of doses	Size of vaccinated area (km²)	Distribution method
Buffer zone Republic of Lithuania	Lysvulpen	504,940	20,400	Aerial
Buffer zone Republic of Lilthuania	Lysvulpen	504,940	20,400	Aerial
Buffer zone in Republic of Belarus	Rabigen SAG2	825,000	33,000	Aerial
Total		1,834,880	73,800	

Table C - OFFICIAL CONTROL OF ORAL VACCINES BEFORE THEIR DISTRIBUTION

Number of batches distributed	Number of batches controlled by CA	Number of batches rejected
4	4	0

Batch number	Manufacturer	Sampling date	Virus titration result	Outcome of the titration
8725	Bioveta	25/3/2018	Positive	Acceptable
8825S	Bioveta	25/3/2018	Positive	Acceptable
0825	Bioveta	12/9/2018	Positive	Acceptable
0925	Bioveta	12/9/2018	Positive	Acceptable

COMMENT / ADDITIONAL CLARIFICATION

N/A

1.8.10 SANTE Data Collection Platform - PRODUCTION • Contact us at SANTE-XMLGATE3@ec europa eu

20190409-RZO59P5C Page 5/5