Oilseed rape 73496 **Organisation: The European GMO-free Citizens (De Gentechvrije Burgers)** **Country: The Netherlands** Type: Others... #### a. Assessment: # **b. Food Safety Assessment:** Others Over 100 rodent feeding studies find harm using Roundup Ready and insecticide-producing GMO-food: Digestive issues, reproductive issues, immune problems, blood problems, disturbances in pancreas, liver, kidneys, adrenals, ovaries, testes, thymus. At this point everyone still saying it's perfectly "safe" is just a science denier. Source: www.gmofreeusa.org Proven: Glyphosate herbicides change gene function and cause DNA damage **Details** Published: 27 April 2021 GMWatch/Twitter Bombshell finding could end EU authorization of glyphosate. Report: Claire Robinson Glyphosate-based herbicides such as Roundup activate mechanisms involved in cancer development, including DNA damage – and these effects occur at doses assumed by regulators to have no adverse effects, a new study shows. The DNA damage was caused by oxidative stress, a destructive imbalance in the body that can cause a long list of diseases. In-depth comparative toxicogenomics of glyphosate and Roundup herbicides: histopathology, transcriptome and epigenome signatures, and DNA damage Robin Mesnage, Mariam Ibragim, Daniele Mandrioli, Laura Falcioni, Fiorella Belpoggi, Inger Brandsma, Emma Bourne, Emanuel Savage, Charles A Mein, Michael N Antoniou doi: https://doi.org/10.1101/2021.04.12.439463In-depth comparative toxicogenomics of glyphosate and Roundup herbicides: histopathology, transcriptome and epigenome signatures, and DNA damage | bioRxiv ## 4. Conclusions and recommendations Don't do it! The European GMO-free Citizens (De Gentechvrije Burgers) don't want those genetically modified oilseed rape 73496 in feed and food! Also on behalve of St. Ekopark, Lelystad. Organic food and feed is the answer to feed the world! # Oilseed rape 73496 **Organisation: The European GMO-free Citizens (De Gentechvrije Burgers)** **Country: The Netherlands** Type: Others... ### a. Assessment: ## **b. Food Safety Assessment:** ## 4. Conclusions and recommendations A few thoughts on genetic engineering by Jeanine van Nieukerken This technology is changing the nutritional value of our food. Food obtained from genetically engineered seed or plant material, unlike naturally produced food, is not compatible with our finely tuned organic system and its environment. This technology is making the human body dependent on an unnatural chemical treadmill and is destroying the natural flow of information in our bodies' genetic processes and in our ecosystem. The technology of genetic engineering impacts on the blueprint of life, which has developed flawlessly thanks to evolution. DNA is the natural blueprint for the individuality of a living organism. Where there is genetic engineering, an organism is manipulated at the source of its uniqueness, causing its natural foundations to change, and the consequences are unforeseeable. Life cannot be regulated by human endeavour. When this technology is applied to the raw materials for the food that we eat, unforeseen side-effects are inevitable. Mutations can occur which change the function of an organism's natural genes, which in turn can lead to unwanted side-effects. The laws of nature are nothing less than the ordering principles which govern the course of living nature, everywhere and in all things. These laws operate at all levels of creation and it is genetic information which ensures that there is order in creation. Just look at the four seasons: how seeds grow into vegetables, trees, bushes and flowers, which produce their own fruits containing seeds which are then themselves sown, and so it goes on; or the natural reproduction of living beings from a single egg cell and a single seed cell to form a perfect human being or animal. Everything in the cosmos is intimately linked with everything else. There is a close connection between every living being. Genetic engineering and cloning cause confusion, with unpredictable consequences, because the results fail to match the intended quality of life. There's no turning back the clock on genetic engineering. Clones are unable to reproduce naturally. This is a case of human error, of interference in the natural interplay of plants, animals and humans in the broader context of the universe. Genetic engineers in their laboratories are playing God, but their games do not offer the hoped-for outcome. We are drifting ever further away from true quality of life. It's wonderful what we're doing! Hurray, we're doing great!!! The hunger that plagues our world is being used as a marketing instrument. We are even farming organs for the eventuality that we lose one What a stupid approach.... As we see things, it would be wiser to take a look at other cultures to see if they have a different, more positive approach to the human body and mind: in particular, an approach based on prevention. When genetic engineering was in its infancy, after much laboratory research and numerous field trials, multinationals, government commissions, etc. leapt into action to promote GM crops as fast as possible and to foist them onto the entire world through advertising and lobbying. The objection is that insufficient research has been done into the long-term effects. And that objection is justified. As Mothers for Nature ('*Natuurwetmoeders*' – but the same goes for fathers!), we are responsible for looking after our children and grandchildren now and in the future, and no one wants to see their child or grandchild grow up unhealthy and unhappy. We would like to see more openness so that we can decide whether the competent authorities in the USA, Europe and elsewhere which have been pushing and lobbying for GM crops in the decision-making processes have been honest and objective in the interest of the consumer. By way of example, Dr Steven Druker, a lawyer in the USA, after studying more than 43,000 pages of documentary evidence, has shown that the FDA fell short of its remit when issuing permits for genetically modified food. In 1998, the FDA had to answer for its actions in court. In our eyes, the political classes and the biotech and pharmaceutical industries have lost all credibility. No matter who we talk to, they turn up their nose when we mention effects like short- or long-term toxicity. Whatever happened to honesty and integrity in our dealings with our fellow human beings? Where have our politicians and industrialists left their conscience when it comes to informing the consumer about this profound interference in the very foundations of life? There are already enough examples of serious mutations, often with fatal outcomes as a result of delayed side-effects: mothers and daughters who used the DES hormone, thalidamide babies, glyphosate, BSE, deaths caused by the use of tryptophan from GM bacteria, etc. All the long years of terrible suffering in families which have been struck by these diseases. The misery and worry which plague their daily lives. When the truth about the cause of it all suddenly comes to light after years, often as a result of leaked data from documents which have been kept under lock and key, the perpetrators will again be facing legal claims which will take years to go through the courts. Disaster after disaster, which we could have been spared. Not to mention the cost to the healthcare system. It is unacceptable for groups of people to be used as guinea pigs, without knowing what the effects of using those products are. It's inhuman. It's an affront to human dignity committed by industry and our political leaders. Jan Storms said in a *Teleac* programme broadcast in November 1999: "Rabbits have been genetically modified so that their milk produces a medicine which is used to treat Pompe disease, a disease of the muscles which affects humans. The big question is obviously whether it's right to implant a human gene into a rabbit. In the course of this process, a human gene is implanted into every single rabbit cell. That gene may contain the building blocks of viral infections. This is called proviral material. The material comes into contact with pathogens which are specific to rabbits. The pathogens (viruses) of the rabbit can recombine with the proviral material in the human gene. The resultant virus can be pathogenic for humans. The question arises whether it is right to expose the entire world population to this type of risk for the sake of a few persons suffering from a muscular disease." In an interview with the <u>Algemeen Dagblad</u> newspaper published on 17 October 2000 to mark the publication of Greenpeace's 'True Food Shopping List', Geert Ritsema said: "In the United States, a new type of lettuce has been created containing genetic material from rats' liver in order to increase its vitamin C content. Scorpions' genes are used to make maize which is toxic to certain insects. Chicken genes are being implanted into apples, firefly genes into maize, and tobacco genes into strawberries." If it is true that a human lysozyme gene has been implanted into carrots (as is said to have happened in Japan), that would make cannibals of us. Where is the respect for our fellow humans? And what about all the harmful effects which can occur, and which have not been the subject of long-term research? As we see things, if you're vegetarian, you can never eat potatoes, lettuce, maize, cornflakes or carrots again. You can't eat tomatoes if they contain fish genes, and as a non-smoker you can't eat any more strawberries. Reproduced with permission from the *Stichting Natuurwetmoeders* web site. #### 5. Others 11 July 2021 *Stichting Natuurwetmoeders* in Bussum is in full agreement with the GMO-free Citizens, who have previously discussed the approval of this genetically modified rapeseed with us. They have been warning for many years against built-in pesticides in genetically modified food and feed. # Oilseed rape 73496 Organisation: Testbiotech e.V. - Institute for Independent Impact Assessment of Biotechnology Country: Germany **Type: Non Profit Organisation** # a. Assessment: Molecular characterisation So-called open reading frames (ORF), which can give rise to various new gene products, were identified at the sites of insertion. The relevant DNA sequences were only assessed for potential new proteins and not for other biologically active DNA products, such as non-coding (nc) RNA. Newly produced ncRNAs may cause RNAi effects on gene regulation within the intestinal microbiome, and also in mammalian cells after being taken up from the gut. In its reply to experts from Member States (EFSA, 2021b), EFSA declared this issue to be not relevant, but did not give a detailed assessment. An inversion of a larger region of a chromosome was observed that was most probably due to the method of genetic engineering (biolistic transformation). This inversion affects the function of a gene involved in the functions of glycolytic enzymes needed for autotrophic growth in plants (it belongs to the gene family of triose phosphate transporter, tpt). It is unclear to which extent other gene copies can compensate for this function under environmental stress conditions, e.g. those caused by climate change. No data were made available to explore this issue although it is also relevant for the assessment of the phenotype and plant composition. Moreover, the expression data for the newly introduced genes did not take into account the range of stressors, the higher rate of herbicide applications or any of the relevant bioclimatic regions that these plants will be exposed to in the countries where they are cultivated. Therefore, the data are inconclusive. This also affects assessment of the phenotype and plant composition, and raises the question to which extent amino acids are acetylated (see below). Conclusion - molecular characterisation and gene expression To gather reliable data on gene expression and functional genetic stability, the plants should have been subjected to a much broader range of defined environmental conditions and stressors. They should, in addition, have been tested in all relevant bioclimatic regions where the plants will be grown. EFSA should have further requested the applicant to submit data from field trials representing current agricultural practices, including high rates of spraying with the complementary herbicides. In summary, the oilseed rape tested in field trials does not sufficiently represent the imported kernels and products. Consequently, the data presented by the applicant and accepted by EFSA are insufficient to conclude on the impact of environmental (stress) factors and herbicide applications. They are also insufficient to conclude on the impact that different genetic backgrounds have on gene expression and plant metabolism. Based on the available data, no final conclusions can be drawn on the safety of the plants. Therefore, the data do not fulfill the requirements of Regulation 1829/2003. # Comparative analysis (for compositional analysis and agronomic traits and GM phenotype) Field trials were only performed in the US and Canada for just one year to generate the data on plant composition and for assessment of agronomic and phenotypic characteristics (EFSA, 2021a). Nevertheless, a large number of significant differences in comparison to the conventionally bred plants were identified. Agronomic and phenotypic characteristics Only a very low number of criteria (12) were assessed by the applicant, 5 of them showed significant differences if the plants were sprayed with the complementary herbicide (4 if the plants were not sprayed). While the number of statistically significant differences was found to be low, this would probably have been higher if the plants had been exposed to a sufficiently broad range of stressors. In awareness of the unintended genetic changes (inversion of gene sequences, impacting important gene functions), it is likely that the plants, if grown in a wider range of environmental conditions, would exhibit more substantial and also more significant differences. Phenotypic changes due to the deficiency of tpt gene activity may, for example, impact growth, biomass and yield. At least two of the parameters (flowering duration and plant height) indicate possible growth retardation. Therefore, without further trials, the data on agronomic and phenotypic characteristics are inconclusive. This assumption is also reinforced by germination tests which showed substantial differences (lower rates in germination) between the seeds produced by the GE oilseed rape compared to conventionally bred plants. These differences were dependent on the temperature. The reason for the differences in germination was not investigated. Seed dormancy was not assessed. ## Plant composition Of 103 compounds which were subjected to statistical analysis to assess changes in plant composition, 53 were significantly different in plants not sprayed with the complementary herbicide compared to 56 in those sprayed with glyphosate. Several differences were considered to be outside the range of expected values, especially in regard to acetylated derivatives of several amino acids. Concentrations of N-acetylaspartate (NAA), N-acetylglutamate (NAG) and N-acetylthreonine (NAT) were much higher compared to data from conventionally bred plants. This was explained as a side effect of the additionally inserted gene sequences and enzymes produced thereof. These enzymes are known not only to intentionally acetylate glyphosate, but also to unintentionally acetylate amino acids. As a result, the GE plants are not comparable to their conventional counterparts and must undergo a much more detailed risk assessment, which should include the systemic impact on plant metabolism. A further factor supporting the case for more detailed risk assessment is the fact that the gene insertion process caused the loss of function of an important gene. However, no further omics data were presented. It is also concerning that no data were provided on the concentration of N-acetyl glyphosate. These data are meant to show there is no longer any herbicidal activity; they are nevertheless also relevant for toxicity assessment (EFSA, 2009). Finally, the data that were presented did not take into account the cultivation of the GE oilseed rape in all relevant producing countries or cultivation in more extreme climate conditions, e.g. due to the effects of climate change. The range of differences and their significance are likely to be substantially increased if the plants are exposed to a wider range of regional and environmental conditions. In addition, EFSA should have requested the applicant to submit data from field trials, including several sprayings with higher dosages of the complementary herbicide. Conclusion on comparative assessment of plant composition and phenotypic and agronomic characteristics The data provided show that the GE oilseed rape plants are quite different to their conventional comparator. Therefore, much more data should have been requested, including on the systemic effects of genetic and metabolic differences. Furthermore, the data provided by the applicant and accepted by EFSA are insufficient to conclude on the impact of environmental factors, herbicide applications and genetic background on gene expression, plant metabolism, plant composition or agronomic and phenotypic characteristics. To gather reliable data on compositional analysis and agronomic characteristics, the plants should have been subjected to a much broader range of defined environmental conditions and stressors. Whatever the case, they should have been tested in all relevant bioclimatic regions to which these plans will be exposed in the countries where they are cultivated. Furthermore, EFSA should have requested the applicant to submit data from field trials representing current agricultural practices, including higher rates of spraying with the complementary herbicides. In summary, the GE oilseed rape tested in field trials do not sufficiently represent the imported kernels and products. Consequently, the data presented by the applicant and accepted by EFSA are insufficient to conclude on the impact environmental factors, herbicide applications and different genetic backgrounds will have on plant composition and agronomic characteristics. Based on the available data, no final conclusions can be drawn on the safety of the plants. Therefore, the data do not fulfill the requirements of Regulation 1829/2003. # **b. Food Safety Assessment:** Toxicology Acetylated derivatives of several amino acids are, for example, known to be involved in brain and kidney disorders. Furthermore, a previous 90-day rat study reported an impact on the salivary glands in both male and female rats orally exposed to 500 mg NAA/kg bw. Nevertheless, EFSA believes that the data from risk assessment in combination with existing data on consumption habits do not raise health concerns. EFSA (2021a) only suggests carrying out post-market monitoring (PMM) which should be focused on the "collection of import data to Europe of oilseed rape 73496 and/or its products, entering the food and feed supply chains. If imports are identified, consumption data should be collected for humans and animals (e.g. through dietary surveys) on oilseed rape 73496 and/or its food and feed products to confirm the predicted consumption data and to verify that the conditions of use are those considered during the pre-market risk assessment." EFSA is referring here to data provided by the applicant which are, however (see above), unlikely to sufficiently represent the true range of acetylated derivatives of amino acids in the harvested kernels and derived products. Therefore, the EFSA calculation on uncertainties and limits of exposure are based on insufficient data and hence not reliable. This will also undermine the reliability of the planned PMM. Furthermore, EFSA (neither the GMO panel nor the pesticides panel) does not present any risk assessment data on N-acetyl glyphosate, which is meant to show there is no longer any herbicidal activity, but is also relevant for toxicity assessment of the products derived from the GE oilseed rape. While these data were made available for maize and soybean (EFSA, 2009), they seem to be absent for GE oilseed rape. Therefore, safety of the GE oilseed rape kernels and related products at the stage of consumption is not sufficiently demonstrated. #### 3. Environmental risk assessment Transgenic oilseed rape is known to be established independently from cultivation in countries such as Canada, the US, Japan, Australia and Switzerland (Bauer-Panskus et al., 2013) and more recently in Argentina (Pandolfo et al., 2018). Oilseed rape (Brassica napus) can spread via pollen and seeds, and seeds can remain viable in the soil for more than ten years (seed dormancy). Europe is the centre of origin and genetic diversity for the group of Brassica plants to which oilseed rape belongs. Some native plant populations, such as Brassica rapa (turnip), can hybridise with oilseed rape. Brassic napus itself occurs mainly as a cultivated plant, but still maintains significant characteristics of a wild plant. Disturbed soil promotes the establishment of Brassica napus beyond the fields, whereas dense vegetation will hinder establishment. However, Brassica napus growing in the wild is found primarily in habitats where wild relatives of the Brassica genus and related genera grow. In addition, many related species which can hybridise with oilseed rape occur in environments such as road verges, industrial or feral sites. Gene flow to wild relatives is possible and likely to happen, even if Brassica napus itself only has a reduced potential to spread in a densely vegetated environment (Bauer-Panskus et al., 2013). The plants are mostly pollinated by insects, such as flies, honey bees and butterflies, which can also carry the pollen over many kilometers. Wind is also relevant for pollen drift: the farthest pollen-mediated outcrossing distance measured to date is 26 kilometres, recorded in a field trial with sterile male plants (Ramsay et al., 2003). Furthermore, the seeds remain viable in the soil for more than ten years (Lutman et al., 2003). Consequently, oilseed rape has a high potential for volunteer plants even many years after the first sowing. Oilseed rape can appear in ruderal populations along field edges and roadsides. Pivard et al. (2008) found that ruderal populations are self-sustaining in a semi-permanent form. In Japan, GE oilseed rape from imports was found over a period of ten years near transportation roads (Nakajima et al., 2020). According to a recent study, these plants show considerable diversity, as they may have hybribized with nearby GE and non-GE rapeseeds, "resulting in a broad diversity of GM feral populations" (Chen et al., 2020). According to Munier et al. (2012), herbicide tolerant oilseed rape is a weed. There are weedy forms of B. rapa and B. olereracea. The wild relative species Sinapis arvensis, Raphanus raphanistrum and Hirschfeldia incana are also considered to be weeds (OECD, 2012). Recent science shows that also gene flow rates between B. napus and relatives like black mustard (B. nigra) are higher than previously assumed and may have been underestimated in risk assessment (Marotti et al. 2020). It cannot be ruled out that the plants will persist in the environment after spillage and start to propagate. This would allow next generation effects to emerge that were neither assessed by the applicant nor by EFSA (Bauer-Panskus et al., 2020). Therefore, the EU Commission should not allow the import of viable kernels. ## 4. Conclusions and recommendations Importing viable kernels of oilseed rape 73496 cannot be allowed. Furthermore, the application has to be rejected since the safety of food and feed products derived from the kernels was not demonstrated. ### 5. Others Implementing Regulation 503/2013 came into force in December 2013. While this application was filed before then, the Regulation, after such a long period of time, should nevertheless have been applied to avoid risk assessment based on outdated data and insufficient standards. It should not be overlooked that Regulation 1829/2003 only allows market access (without any possibility of deviating) only "after a scientific evaluation of the highest possible standard." (Recital 9 of Regulation 1829/2003) References (for all parts): Bauer-Panskus, A., Breckling, B., Hamberger, S., Then, C. (2013) Cultivation-independent establishment of genetically engineered plants in natural populations: current evidence and - implications for EU regulation, Environmental Sciences Europe, 25: 34. https://doi.org/10.1186/2190-4715-25-34 - Bauer-Panskus, A., Miyazaki, J., Kawall, K., Then, C. (2020) Risk assessment of genetically engineered plants that can persist and propagate in the environment. Environmental Sciences Europe, 32(1): 1-15. https://doi.org/10.1186/s12302-020-00301-0 - Chen, R., Shimono, A., Aono, M., Nakajima, N., Ohsawa, R., Yoshioka, Y. (2020) Genetic diversity and population structure of feral rapeseed (Brassica napus L.) in Japan. Plos one, 15(1): e0227990. https://doi.org/10.1371/journal.pone.0227990 - EFSA (2009) Modification of the residue definition of glyphosate in genetically modified maize grain and soybeans, and in products of animal origin on request from the European Commission. EFSA J, 7(9): 2009. https://doi.org/10.2903/j.efsa.2009.1310 - EFSA (2021a) Scientific Opinion on the assessment of genetically modified oilseed rape 73496 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2012-109). EFSA J, 19(6): 6610. https://doi.org/10.2903/j.efsa.2021.6610 - EFSA (2021b) Application, Comments and opinions submitted by Member States during the three-month consultation period. OpenEFSA portal, https://open.efsa.europa.eu/questions/EFSA-Q-2012-00617 - Lutman, P.J.W., Freeman, S.E., Pekrun, C. (2003) The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. The Journal of Agricultural Science, 141(2): 231-240. https://doi.org/10.1017/S0021859603003575 - Marotti, I., Whittaker, A., Benedettelli, S., Dinelli, G., Bosi, S. (2020) Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy. Plant Science, 296: 110493. https://doi.org/10.1016/j.plantsci.2020.110493 - Munier, D.J., Brittan, K.L., Lanini, W.T. (2012) Seed bank persistence of genetically modified canola in California. Environmental Science and Pollution Research, 19(6): 2281-2284. https://doi.org/10.1007/s11356-011-0733-8 - Nakajima, N., Nishizawa, T., Aono, M., Tamaoki, M., Saji, H. (2020) Occurrence of spilled genetically modified oilseed rape growing along a Japanese roadside over 10 years. Weed Biol Manag, 20(4): 139-146. https://doi.org/10.1111/wbm.12213 - OECD (2012) Consensus Document on the Biology of Brassica crops (Brassica spp.). Organisation for Economic Co-operation and Development. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)41&doclanguage=en - Pandolfo, C. E., Presotto, A., Carbonell, F. T., Ureta, S., Poverene, M., & Cantamutto, M. (2018) Transgene escape and persistence in an agroecosystem: the case of glyphosateresistant Brassica rapa L. in central Argentina. Environmental Science and Pollution Research, 25(7): 6251-6264. https://doi.org/10.1007/s11356-017-0726-3 Pivard, S., Adamczyk, K., Lecomte, J., Lavigne, C., Bouvier, A., Deville, A., Gouyon, P.H., Huet, S. (2008) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J Appl Ecol, 45: 476-485. https://doi.org/10.1111/j.1365-2664.2007.01358.x Ramsay, G., Thompson, C., Squire, G. (2003) Quantifying landscape-scale gene flow in oilseed rape. Final Report of DEFRA Project RG0216: An experimental and mathematical study of the local and regional scale movement of an oilseed rape transgene. www.scri.ac.uk/scri/file/EPI/Agroecology/Landscape_scale_geneflow_in_oilseed_rape_rg02 16.pdf # Oilseed rape 73496 Organisation: Testbiotech e.V. - Institute for Independent Impact Assessment of Biotechnology Country: Germany **Type: Non Profit Organisation** ## a. Assessment: Molecular characterisation So-called open reading frames (ORF), which can give rise to various new gene products, were identified at the sites of insertion. The relevant DNA sequences were only assessed for potential new proteins and not for other biologically active DNA products, such as non-coding (nc) RNA. Newly produced ncRNAs may cause RNAi effects on gene regulation within the intestinal microbiome, and also in mammalian cells after being taken up from the gut. In its reply to experts from Member States (EFSA, 2021b), EFSA declared this issue to be not relevant, but did not give a detailed assessment. An inversion of a larger region of a chromosome was observed that was most probably due to the method of genetic engineering (biolistic transformation). This inversion affects the function of a gene involved in the functions of glycolytic enzymes needed for autotrophic growth in plants (it belongs to the gene family of triose phosphate transporter, tpt). It is unclear to which extent other gene copies can compensate for this function under environmental stress conditions, e.g. those caused by climate change. No data were made available to explore this issue although it is also relevant for the assessment of the phenotype and plant composition. Moreover, the expression data for the newly introduced genes did not take into account the range of stressors, the higher rate of herbicide applications or any of the relevant bioclimatic regions that these plants will be exposed to in the countries where they are cultivated. Therefore, the data are inconclusive. This also affects assessment of the phenotype and plant composition, and raises the question to which extent amino acids are acetylated (see below). Conclusion - molecular characterisation and gene expression To gather reliable data on gene expression and functional genetic stability, the plants should have been subjected to a much broader range of defined environmental conditions and stressors. They should, in addition, have been tested in all relevant bioclimatic regions where the plants will be grown. EFSA should have further requested the applicant to submit data from field trials representing current agricultural practices, including high rates of spraying with the complementary herbicides. In summary, the oilseed rape tested in field trials does not sufficiently represent the imported kernels and products. Consequently, the data presented by the applicant and accepted by EFSA are insufficient to conclude on the impact of environmental (stress) factors and herbicide applications. They are also insufficient to conclude on the impact that different genetic backgrounds have on gene expression and plant metabolism. Based on the available data, no final conclusions can be drawn on the safety of the plants. Therefore, the data do not fulfill the requirements of Regulation 1829/2003. # Comparative analysis (for compositional analysis and agronomic traits and GM phenotype) Field trials were only performed in the US and Canada for just one year to generate the data on plant composition and for assessment of agronomic and phenotypic characteristics (EFSA, 2021a). Nevertheless, a large number of significant differences in comparison to the conventionally bred plants were identified. Agronomic and phenotypic characteristics Only a very low number of criteria (12) were assessed by the applicant, 5 of them showed significant differences if the plants were sprayed with the complementary herbicide (4 if the plants were not sprayed). While the number of statistically significant differences was found to be low, this would probably have been higher if the plants had been exposed to a sufficiently broad range of stressors. In awareness of the unintended genetic changes (inversion of gene sequences, impacting important gene functions), it is likely that the plants, if grown in a wider range of environmental conditions, would exhibit more substantial and also more significant differences. Phenotypic changes due to the deficiency of tpt gene activity may, for example, impact growth, biomass and yield. At least two of the parameters (flowering duration and plant height) indicate possible growth retardation. Therefore, without further trials, the data on agronomic and phenotypic characteristics are inconclusive. This assumption is also reinforced by germination tests which showed substantial differences (lower rates in germination) between the seeds produced by the GE oilseed rape compared to conventionally bred plants. These differences were dependent on the temperature. The reason for the differences in germination was not investigated. Seed dormancy was not assessed. # Plant composition Of 103 compounds which were subjected to statistical analysis to assess changes in plant composition, 53 were significantly different in plants not sprayed with the complementary herbicide compared to 56 in those sprayed with glyphosate. Several differences were considered to be outside the range of expected values, especially in regard to acetylated derivatives of several amino acids. Concentrations of N-acetylaspartate (NAA), N-acetylglutamate (NAG) and N-acetylthreonine (NAT) were much higher compared to data from conventionally bred plants. This was explained as a side effect of the additionally inserted gene sequences and enzymes produced thereof. These enzymes are known not only to intentionally acetylate glyphosate, but also to unintentionally acetylate amino acids. As a result, the GE plants are not comparable to their conventional counterparts and must undergo a much more detailed risk assessment, which should include the systemic impact on plant metabolism. A further factor supporting the case for more detailed risk assessment is the fact that the gene insertion process caused the loss of function of an important gene. However, no further omics data were presented. It is also concerning that no data were provided on the concentration of N-acetyl glyphosate. These data are meant to show there is no longer any herbicidal activity; they are nevertheless also relevant for toxicity assessment (EFSA, 2009). Finally, the data that were presented did not take into account the cultivation of the GE oilseed rape in all relevant producing countries or cultivation in more extreme climate conditions, e.g. due to the effects of climate change. The range of differences and their significance are likely to be substantially increased if the plants are exposed to a wider range of regional and environmental conditions. In addition, EFSA should have requested the applicant to submit data from field trials, including several sprayings with higher dosages of the complementary herbicide. Conclusion on comparative assessment of plant composition and phenotypic and agronomic characteristics The data provided show that the GE oilseed rape plants are quite different to their conventional comparator. Therefore, much more data should have been requested, including on the systemic effects of genetic and metabolic differences. Furthermore, the data provided by the applicant and accepted by EFSA are insufficient to conclude on the impact of environmental factors, herbicide applications and genetic background on gene expression, plant metabolism, plant composition or agronomic and phenotypic characteristics. To gather reliable data on compositional analysis and agronomic characteristics, the plants should have been subjected to a much broader range of defined environmental conditions and stressors. Whatever the case, they should have been tested in all relevant bioclimatic regions to which these plans will be exposed in the countries where they are cultivated. Furthermore, EFSA should have requested the applicant to submit data from field trials representing current agricultural practices, including higher rates of spraying with the complementary herbicides. In summary, the GE oilseed rape tested in field trials do not sufficiently represent the imported kernels and products. Consequently, the data presented by the applicant and accepted by EFSA are insufficient to conclude on the impact environmental factors, herbicide applications and different genetic backgrounds will have on plant composition and agronomic characteristics. Based on the available data, no final conclusions can be drawn on the safety of the plants. Therefore, the data do not fulfill the requirements of Regulation 1829/2003. # **b. Food Safety Assessment:** Toxicology Acetylated derivatives of several amino acids are, for example, known to be involved in brain and kidney disorders. Furthermore, a previous 90-day rat study reported an impact on the salivary glands in both male and female rats orally exposed to 500 mg NAA/kg bw. Nevertheless, EFSA believes that the data from risk assessment in combination with existing data on consumption habits do not raise health concerns. EFSA (2021a) only suggests carrying out post-market monitoring (PMM) which should be focused on the "collection of import data to Europe of oilseed rape 73496 and/or its products, entering the food and feed supply chains. If imports are identified, consumption data should be collected for humans and animals (e.g. through dietary surveys) on oilseed rape 73496 and/or its food and feed products to confirm the predicted consumption data and to verify that the conditions of use are those considered during the pre-market risk assessment." EFSA is referring here to data provided by the applicant which are, however (see above), unlikely to sufficiently represent the true range of acetylated derivatives of amino acids in the harvested kernels and derived products. Therefore, the EFSA calculation on uncertainties and limits of exposure are based on insufficient data and hence not reliable. This will also undermine the reliability of the planned PMM. Furthermore, EFSA (neither the GMO panel nor the pesticides panel) does not present any risk assessment data on N-acetyl glyphosate, which is meant to show there is no longer any herbicidal activity, but is also relevant for toxicity assessment of the products derived from the GE oilseed rape. While these data were made available for maize and soybean (EFSA, 2009), they seem to be absent for GE oilseed rape. Therefore, safety of the GE oilseed rape kernels and related products at the stage of consumption is not sufficiently demonstrated. #### 3. Environmental risk assessment Transgenic oilseed rape is known to be established independently from cultivation in countries such as Canada, the US, Japan, Australia and Switzerland (Bauer-Panskus et al., 2013) and more recently in Argentina (Pandolfo et al., 2018). Oilseed rape (Brassica napus) can spread via pollen and seeds, and seeds can remain viable in the soil for more than ten years (seed dormancy). Europe is the centre of origin and genetic diversity for the group of Brassica plants to which oilseed rape belongs. Some native plant populations, such as Brassica rapa (turnip), can hybridise with oilseed rape. Brassic napus itself occurs mainly as a cultivated plant, but still maintains significant characteristics of a wild plant. Disturbed soil promotes the establishment of Brassica napus beyond the fields, whereas dense vegetation will hinder establishment. However, Brassica napus growing in the wild is found primarily in habitats where wild relatives of the Brassica genus and related genera grow. In addition, many related species which can hybridise with oilseed rape occur in environments such as road verges, industrial or feral sites. Gene flow to wild relatives is possible and likely to happen, even if Brassica napus itself only has a reduced potential to spread in a densely vegetated environment (Bauer-Panskus et al., 2013). The plants are mostly pollinated by insects, such as flies, honey bees and butterflies, which can also carry the pollen over many kilometers. Wind is also relevant for pollen drift: the farthest pollen-mediated outcrossing distance measured to date is 26 kilometres, recorded in a field trial with sterile male plants (Ramsay et al., 2003). Furthermore, the seeds remain viable in the soil for more than ten years (Lutman et al., 2003). Consequently, oilseed rape has a high potential for volunteer plants even many years after the first sowing. Oilseed rape can appear in ruderal populations along field edges and roadsides. Pivard et al. (2008) found that ruderal populations are self-sustaining in a semi-permanent form. In Japan, GE oilseed rape from imports was found over a period of ten years near transportation roads (Nakajima et al., 2020). According to a recent study, these plants show considerable diversity, as they may have hybribized with nearby GE and non-GE rapeseeds, "resulting in a broad diversity of GM feral populations" (Chen et al., 2020). According to Munier et al. (2012), herbicide tolerant oilseed rape is a weed. There are weedy forms of B. rapa and B. olereracea. The wild relative species Sinapis arvensis, Raphanus raphanistrum and Hirschfeldia incana are also considered to be weeds (OECD, 2012). Recent science shows that also gene flow rates between B. napus and relatives like black mustard (B. nigra) are higher than previously assumed and may have been underestimated in risk assessment (Marotti et al. 2020). It cannot be ruled out that the plants will persist in the environment after spillage and start to propagate. This would allow next generation effects to emerge that were neither assessed by the applicant nor by EFSA (Bauer-Panskus et al., 2020). Therefore, the EU Commission should not allow the import of viable kernels. ## 4. Conclusions and recommendations Importing viable kernels of oilseed rape 73496 cannot be allowed. Furthermore, the application has to be rejected since the safety of food and feed products derived from the kernels was not demonstrated. ### 5. Others - First submission of our comments (16 July) was not confirmed as usual. So to be sure, we submit it a second time. - Implementing Regulation 503/2013 came into force in December 2013. While this application was filed before then, the Regulation, after such a long period of time, should nevertheless have been applied to avoid risk assessment based on outdated data and insufficient standards. It should not be overlooked that Regulation 1829/2003 only allows market access (without any possibility of deviating) only "after a scientific evaluation of the highest possible standard." (Recital 9 of Regulation 1829/2003) References (for all parts): Bauer-Panskus, A., Breckling, B., Hamberger, S., Then, C. (2013) Cultivation-independent establishment of genetically engineered plants in natural populations: current evidence and implications for EU regulation, Environmental Sciences Europe, 25: 34. https://doi.org/10.1186/2190-4715-25-34 Bauer-Panskus, A., Miyazaki, J., Kawall, K., Then, C. (2020) Risk assessment of genetically engineered plants that can persist and propagate in the environment. Environmental Sciences Europe, 32(1): 1-15. https://doi.org/10.1186/s12302-020-00301-0 Chen, R., Shimono, A., Aono, M., Nakajima, N., Ohsawa, R., Yoshioka, Y. (2020) Genetic diversity and population structure of feral rapeseed (Brassica napus L.) in Japan. Plos one, 15(1): e0227990. https://doi.org/10.1371/journal.pone.0227990 EFSA (2009) Modification of the residue definition of glyphosate in genetically modified maize grain and soybeans, and in products of animal origin on request from the European Commission. EFSA J, 7(9): 2009. https://doi.org/10.2903/j.efsa.2009.1310 EFSA (2021a) Scientific Opinion on the assessment of genetically modified oilseed rape 73496 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2012-109). EFSA J, 19(6): 6610. https://doi.org/10.2903/j.efsa.2021.6610 EFSA (2021b) Application , Comments and opinions submitted by Member States during the three-month consultation period. OpenEFSA portal, https://open.efsa.europa.eu/questions/EFSA-Q-2012-00617 Lutman, P.J.W., Freeman, S.E., Pekrun, C. (2003) The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. The Journal of Agricultural Science, 141(2): 231-240. https://doi.org/10.1017/S0021859603003575 Marotti, I., Whittaker, A., Benedettelli, S., Dinelli, G., Bosi, S. (2020) Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy. Plant Science, 296: 110493. https://doi.org/10.1016/j.plantsci.2020.110493 Munier, D.J., Brittan, K.L., Lanini, W.T. (2012) Seed bank persistence of genetically modified canola in California. Environmental Science and Pollution Research, 19(6): 2281-2284. https://doi.org/10.1007/s11356-011-0733-8 Nakajima, N., Nishizawa, T., Aono, M., Tamaoki, M., Saji, H. (2020) Occurrence of spilled genetically modified oilseed rape growing along a Japanese roadside over 10 years. Weed Biol Manag, 20(4): 139-146. https://doi.org/10.1111/wbm.12213 OECD (2012) Consensus Document on the Biology of Brassica crops (Brassica spp.). Organisation for Economic Co-operation and Development. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)41&doclanguage=en Pandolfo, C. E., Presotto, A., Carbonell, F. T., Ureta, S., Poverene, M., & Cantamutto, M. (2018) Transgene escape and persistence in an agroecosystem: the case of glyphosate- resistant Brassica rapa L. in central Argentina. Environmental Science and Pollution Research, 25(7): 6251-6264. https://doi.org/10.1007/s11356-017-0726-3 Pivard, S., Adamczyk, K., Lecomte, J., Lavigne, C., Bouvier, A., Deville, A., Gouyon, P.H., Huet, S. (2008) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J Appl Ecol, 45: 476-485. https://doi.org/10.1111/j.1365-2664.2007.01358.x Ramsay, G., Thompson, C., Squire, G. (2003) Quantifying landscape-scale gene flow in oilseed rape. Final Report of DEFRA Project RG0216: An experimental and mathematical study of the local and regional scale movement of an oilseed rape transgene. www.scri.ac.uk/scri/file/EPI/Agroecology/Landscape_scale_geneflow_in_oilseed_rape_rg02 16.pdf