

SANTE DATA COLLECTION PLATFORM

About this dossier

Output on: 2021/02/01 15:55

(Europe/Luxembourg)

Status: closed (submitted)

Created: 2020/04/15 08:28

Last updated: 2020/04/29 15:45

Eradication: Final report for Rabies 2019

For each approved annual or multi-annual programme Member States shall submit to the Commission by the 30 April each year an annual detailed technical and financial report covering the previous year. That report shall include the results achieved and a detailed account of eligible costs incurred (Art 14 of Regulation (EU) No 652/2014).

This form is for information only, no submission possible.

ID: 20200415-BI5B7UIP

Country code: PL

Reporting period

From: 2019 To: 2019 Year of implementation: 2019

1. Technical implementation of the programme

1.1 Description and evaluation of the evolution of the epidemiological situation, the technical implementation of the activities foreseen under the programme and the cost-effectiveness of the programme.

In Poland number of affected terrestrial animals (without bats) decreased from 4 in 2018 to 1 in 2019. The epidemiological situation seems to be stable. The disease occurs in Poland at a very low rate.

In 2019 a case caused by classical rabies virus occurred in Lubelskie region (1 fox), that rabies case was positive for field strain. It was located very close to the border with Belarus and probably caused by a migration of affected wild animals from this country.

Moreover, European bat lyssavirus 1 was confirmed in bats in Kujawsko-pomorskie region (1 case), Mazowieckie region (2 cases), Podlaskie region (1 case), Warminsko-mazurskie (2 cases) and Wielkopolskie region (4 cases).

Please find attached the map of rabies cases locations in Poland (Annex 1).

The activities were technically implemented as foreseen under the programme. There was no need to implement additional vaccination campaign in Malopolskie and Podkarpackie region.

The programme was implemented cost-effectively.

Poland signed agreements with Belarus and Ukraine regarding vaccination buffer zones for 2019-2021. Both, spring and autumn vaccination campaigns were performed in Belarus. The spring campaign took place from 23rd May to 23rd June and the autumn campaign from 4th October to 23rd November. Both, spring and autumn vaccination campaigns were performed in Ukraine. The spring campaign took

place from 24th April to 13th May and the autumn campaign from 12th to 30th September. Please find attached the 2019 final report from Belarus (Annex 2) and the 2019 final report from Ukraine (Annex 3). Poland received only Russian version of the report with data from Belarus.

1.2 Details on the level of achievement of the targets set in the approved programme and technical difficulties.

Taking into account all samples taken in Poland in 2019:

- The targets for number of FAT and RTCIT in animals other than foxes have not been achieved due to decrease in rabies suspicions. The schedules for these tests were implemented at the level of 92,16% and 91,05% respectively, so the goals have been nearly reached.
- In case of foxes the targets on the number of FAT and tetracycline detection tests in healthy hunted animals have been achieved. The schedule for ELISA tests in this group was implemented at the level of 95,67%, so the target has been almost reached. The schedule for the number of RTCIT in suspected foxes was implemented at the level of 94,73% and the schedule for FAT tests for this group of animals at the level of 97,70%, so both targets have been almost reached.
- The target on the number of tests for differentiation of rabies virus strains has been achieved. There was only 1 rabies case in foxes and it was tested in order to distinguish field rabies strain from vaccine strains.
- The targets on vaccination have been achieved in all regions except Malopolskie and Podkarpackie region due to no need to perform additional vaccination campaign.
- The target on % of positive results has been reached in tetracycline detection and almost met in ELISA tests (planned: 51% / achieved: 50,05%)
- The target on the number of vaccine titration tests has not been achieved as the number of vaccine batches distributed was lower than planned.
- The number of rabies cases (in animals other than bats) declined in Poland in 2019 in comparison with year 2018 (from 4 in 2018 to 1 in 2019). There was no more than 5 rabies cases confirmed in 2019, therefore, the target on rabies cases has been reached.

1.3 Epidemiological maps for infection and other relevant data on the disease/activities (information on serotypes involved,...) (Please attach files of data using the PDF attachement feature) Use the textbox below to provide clarifications for the maps you attach, if needed.

Please find attached the above-mentioned maps (Annex4).

Monitoring tests (Poland):

- In most cases % of seropositives and vaccine uptake was higher in adult foxes than in juvenile ones.
- Usually % of seropositives was the lowest in regions bordering with unvaccinated areas.

Tests performed in 2020 on samples taken in 2019 were excluded from the Table A1.

Moreover, the data on tests carried out in 2019 on foxes shot in 2018 were included in the Table A1. These data were not included in the final report for 2018.

Surveillance tests (Poland):

- Virus isolation tests (RTCIT) were carried out due to human exposure and when FAT results needed to be confirmed.
- As the laboratory method is recommended by OIE and WHO, the costs of RTCIT should be co-financed by the European Union.
- The data concerning surveillance tests were not indicated separately for each species to avoid overloading of the form of final report.

Tests performed in 2020 on samples taken in 2019 were excluded from the Table A2.

Moreover, the data on tests carried out in 2019 on samples taken in 2018 were included in the Table A2. These data were not included in the final report for 2018.

Vaccine tests (Poland):

- Each vaccine batch was sampled and tested in the National Reference Laboratory directly before the distribution.
- The number of vaccine titration tests performed is higher than the number of vaccine batches distributed, because one batch could be distributed in more than one region.
- The costs of vaccine titration tests performed directly before vaccine distribution were covered by vaccine suppliers.

The following criteria qualifying of tests to the reporting period were taken into account during preparing Annex 5:

- In case of healthy hunted foxes the date of shooting;
- In case of suspected animals the date of delivery of samples to the laboratory.

These criteria are the most appropriate for the evaluation of programme implementation.

The maps included in Annex4 are in line with the data in Annex5.

There was no possibility to enter the data on RTCIT (virus isolation) into the Table A2 : Surveillance tests, so please find attached the data in Annex6.

ANNEX VI TECHNICAL REPORT ON RABIES PROGRAMMES

VERY IMPORTANT: Please fill out the following tables with figures corresponding to measures performed during the implementing period (1/1 to 31/12).

Table A1 - TEST FOR THE MONITORING OF VACCINATION EFFECTIVENESS

Region	Species and age	Type of test	Test description	Number of tests	Number positive	% positive
Lubelskie	Foxes juvenile	Biomarker	Tetracycline in bones	99	7	7.07 %
Lubelskie	Foxes adult	Biomarker	Tetracycline in bones	960	943	98.23 %
Malopolskie	Foxes juvenile	Biomarker	Tetracycline in bones	41	2	4.88 %
Malopolskie	Foxes adult	Biomarker	Tetracycline in bones	674	622	92.28 %
Mazowieckie	Foxes juvenile	Biomarker	Tetracycline in bones	34	26	76.47 %
Mazowieckie	Foxes adult	Biomarker	Tetracycline in bones	168	150	89.29 %
Podkarpackie	Foxes juvenile	Biomarker	Tetracycline in bones	56	5	8.93 %
Podkarpackie	Foxes adult	Biomarker	Tetracycline in bones	611	601	98.36 %
Podlaskie	Foxes juvenile	Biomarker	Tetracycline in bones	109	93	85.32 %
Podlaskie	Foxes adult	Biomarker	Tetracycline in bones	631	588	93.19 %
Pomorskie	Foxes juvenile	Biomarker	Tetracycline in bones	1	1	100 %
Pomorskie	Foxes adult	Biomarker	Tetracycline in bones	25	20	80 %
Slaskie	Foxes juvenile	Biomarker	Tetracycline in bones	6	1	16.67 %
Slaskie	Foxes adult	Biomarker	Tetracycline in bones	285	234	82.11 %
Swietokrzyskie	Foxes juvenile	Biomarker	Tetracycline in bones	17	4	23.53 %
Swietokrzyskie	Foxes adult	Serological	Tetracycline in bones	350	348	99.43 %
Warminsko-mazurskie	Foxes juvenile	Serological	Tetracycline in bones	103	82	79.61 %
Warminsko-mazurskie	Foxes adult	Serological	Tetracycline in bones	248	214	86.29 %
Lubelskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	95	15	15.79 %
Lubelskie	Foxes adult	Serological	VNT/FAVN/ELISA	914	432	47.26 %
Malopolskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	40	2	5 %
Malopolskie	Foxes adult	Serological	VNT/FAVN/ELISA	674	431	63.95 %
Mazowieckie	Foxes juvenile	Serological	VNT/FAVN/ELISA	28	13	46.43 %
Mazowieckie	Foxes adult	Serological	VNT/FAVN/ELISA	141	76	53.9 %
Podkarpackie	Foxes juvenile	Serological	VNT/FAVN/ELISA	55	12	21.82 %
Podkarpackie	Foxes adult	Serological	VNT/FAVN/ELISA	594	399	67.17 %
Podlaskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	88	34	38.64 %
Podlaskie	Foxes adult	Serological	VNT/FAVN/ELISA	521	284	54.51 %
Pomorskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	1	0	0 %
Pomorskie	Foxes adult	Serological	VNT/FAVN/ELISA	25	0	0 %
Slaskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	6	0	0 %
Slaskie	Foxes adult	Serological	VNT/FAVN/ELISA	290	92	31.72 %
Swietokrzyskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	24	6	25 %
Swietokrzyskie	Foxes adult	Serological	VNT/FAVN/ELISA	462	194	41.99 %
Warminsko-mazurskie	Foxes juvenile	Serological	VNT/FAVN/ELISA	103	37	35.92 %
Warminsko-mazurskie	Foxes adult	Serological	VNT/FAVN/ELISA	247	65	26.32 %
Total				8,726	6,033	69.14 %

Table A2 - SURVEILLANCE TESTS

Region	Animal species	Category	Test description	Number of tests	Number of cases
Lubelskie	Foxes	Active	Fluorescent antibody test (IF)	904	0

Malopolskie	Foxes	Active	Fluorescent antibody test (IF)	617	0
Mazowieckie	Foxes	Active	Fluorescent antibody test (IF)	199	0
Podkarpackie	Foxes	Active	Fluorescent antibody test (IF)	658	0
Podlaskie	Foxes	Active	Fluorescent antibody test (IF)	670	0
Slaskie	Foxes	Active	Fluorescent antibody test (IF)	301	0
Swietokrzyskie	Foxes	Active	Fluorescent antibody test (IF)	386	0
Warminsko-mazurskie	Foxes	Active	Fluorescent antibody test (IF)	229	0
Dolnoslaskie	Foxes	Passive	Fluorescent antibody test (IF)	195	0
Kujawsko-pomorskie	Foxes	Passive	Fluorescent antibody test (IF)	80	0
Lubelskie	Foxes	Passive	Fluorescent antibody test (IF)	116	1
Lubuskie	Foxes	Passive	Fluorescent antibody test (IF)	66	0
Lodzkie	Foxes	Passive	Fluorescent antibody test (IF)	39	0
Malopolskie	Foxes	Passive	Fluorescent antibody test (IF)	59	0
Mazowieckie	Foxes	Passive	Fluorescent antibody test (IF)	101	0
Opolskie	Foxes	Passive	Fluorescent antibody test (IF)	32	0
Podkarpackie	Foxes	Passive	Fluorescent antibody test (IF)	124	0
Podlaskie	Foxes	Passive	Fluorescent antibody test (IF)	47	0
Pomorskie	Foxes	Passive	Fluorescent antibody test (IF)	58	0
Slaskie	Foxes	Passive	Fluorescent antibody test (IF)	33	0
Swietokrzyskie	Foxes	Passive	Fluorescent antibody test (IF)	37	0
Warminsko-mazurskie	Foxes	Passive	Fluorescent antibody test (IF)	51	0
Wielkopolskie	Foxes	Passive	Fluorescent antibody test (IF)	97	0
Zachodniopomorskie	Foxes	Passive	Fluorescent antibody test (IF)	50	0
Dolnoslaskie	Other species	Passive	Fluorescent antibody test (IF)	151	0
Kujawsko-pomorskie	Other species	Passive	Fluorescent antibody test (IF)	124	1
Lubelskie	Other species	Passive	Fluorescent antibody test (IF)	122	0
Lubuskie	Other species	Passive	Fluorescent antibody test (IF)	76	0
Lodzkie	Other species	Passive	Fluorescent antibody test (IF)	96	0
Malopolskie	Other species	Passive	Fluorescent antibody test (IF)	199	0
Mazowieckie	Other species	Passive	Fluorescent antibody test (IF)	419	2
Opolskie	Other species	Passive	Fluorescent antibody test (IF)	62	0
Podkarpackie	Other species	Passive	Fluorescent antibody test (IF)	147	0
Podlaskie	Other species	Passive	Fluorescent antibody test (IF)	64	1
Pomorskie	Other species	Passive	Fluorescent antibody test (IF)	135	0
Slaskie	Other species	Passive	Fluorescent antibody test (IF)	212	0
Swietokrzyskie	Other species	Passive	Fluorescent antibody test (IF)	64	0
Warminsko-mazurskie	Other species	Passive	Fluorescent antibody test (IF)	118	2
Wielkopolskie	Other species	Passive	Fluorescent antibody test (IF)	214	4
Zachodniopomorskie	Other species	Passive	Fluorescent antibody test (IF)	145	0
Total				7,497	11

Number of rabies virus isolates typed for differentiation from vaccine	1
 Typing results (please indicate the number of field strains/vaccine strains, and (optional) comment)	One result positive for field strain.

Table B - WILDLIFE ORAL VACCINATION

Aerial distribution data files:

Downloadable via URL	
Downloadable via ONE	

Description of the analysis performed by the Competent Authority on the aerial distribution data and conclusions of the assessment for the quality of the distribution:

In Poland the representatives of the Competent Authority were present at the airports to evaluate and document the implementation of vaccine aerial distribution. The flight tracks and bait dropping data received from the contractors were compared and checked electronically through the computer software, including GIS mapping. The density of bait drop

Start date	e of First Campaign	25/3/2019	End date of First Campaign	13/4/2019
Start date	e of Second Campaign	20/9/2019	End date of Second Campaign	7/10/2019

Region/Area	Product used	Number of doses	Size of vaccinated area (km²)	Distribution method
Lubelskie (spring campaign)	Lysvulpen	566,800	22,208	Aerial
Lubelskie (spring campaign)	Lysvulpen	2,600	77	Manual
Malopolskie (spring campaign)	Lysvulpen	455,340	15,178	Aerial
Malopolskie (spring campaign)	Lysvulpen	9,150	417	Manual
Mazowieckie (spring campaign)	Lysvulpen	112,744	5,546	Aerial
Podkarpackie (spring campaign)	Lysvulpen	484,830	16,021	Aerial
Podkarpackie (spring campaign)	Lysvulpen	12,600	368	Manual
Podlaskie (spring campaign)	Lysvulpen	439,500	19,175	Aerial
Slaskie (spring campaign)	Lysvulpen	146,320	7,316	Aerial
Slaskie (spring campaign)	Lysvulpen	160	4	Manual
Swietokrzyskie (spring campaign)	Lysvulpen	241,500	9,660	Aerial
Lubelskie (autumn campaign)	Lysvulpen	566,800	22,208	Aerial
Lubelskie (autumn campaign)	Lysvulpen	2,600	78	Manual
Malopolskie (autumn campaign)	Lysvulpen	455,340	15,178	Aerial
Malopolskie (autumn campaign)	Lysvulpen	9,150	377	Manual
Mazowieckie (autumn campaign)	Lysvulpen	112,744	5,546	Aerial
Podkarpackie (autumn campaign)	Lysvulpen	484,830	16,021	Aerial
Podkarpackie (autumn campaign)	Lysvulpen	12,600	367	Manual
Podlaskie (autumn campaign)	Lysvulpen	439,500	19,175	Aerial
Slaskie (autumn campaign)	Lysvulpen	146,320	7,316	Aerial
Slaskie (autumn campaign)	Lysvulpen	160	4	Manual
Swietokrzyskie (autumn campaign)	Lysvulpen	241,500	9,660	Aerial
Warminsko-mazurskie (autumn campaign)	Lysvulpen	102,720	5,136	Aerial
Total		5,045,808	197,036	

Table C - OFFICIAL CONTROL OF ORAL VACCINES BEFORE THEIR DISTRIBUTION

Number of batches distributed	Number of batches controlled by CA	Number of batches rejected
11	11	0

Batch number	Manufacturer	Sampling date	Virus titration result	Outcome of the titration
4226	Bioveta	21/3/2019	1,8 x 10 7.49 TCID 50	Acceptable
4326	Bioveta	21/3/2019	1,8 x 10 7.51 TCID 50	Acceptable
4826	Bioveta	2/4/2019	1,8 x 10 7.18 TCID 50	Acceptable
4326	Bioveta	21/3/2019	1,8 x 10 7.61 TCID 50	Acceptable
4626	Bioveta	21/3/2019	1,8 x 10 7.26 TCID 50	Acceptable
4826	Bioveta	2/4/2019	1,8 x 10 7.49 TCID 50	Acceptable
4926	Bioveta	2/4/2019	1,8 x 10 7.35 TCID 50	Acceptable
4626	Bioveta	27/3/2019	1,8 x 10 7.35 TCID 50	Acceptable
4726	Bioveta	3/4/2019	1,8 x 10 7.43 TCID 50	Acceptable
4626	Bioveta	3/4/2019	1,8 x 10 7.74 TCID 50	Acceptable
4726	Bioveta	3/4/2019	1,8 x 10 7.35 TCID 50	Acceptable
7726	Bioveta	13/9/2019	1,8 x 10 7.89 TCID 50	Acceptable
4726	Bioveta	13/9/2019	1,8 x 10 6.99 TCID 50	Acceptable
4926	Bioveta	13/9/2019	1,8 x 10 6.80 TCID 50	Acceptable
7926	Bioveta	24/9/2019	1,8 x 10 7.68 TCID 50	Acceptable

8026	Bioveta	24/9/2019	1,8 x 10 7.85 TCID 50	Acceptable
7726	Bioveta	13/9/2019	1,8 x 10 7.60 TCID 50	Acceptable
7826	Bioveta	13/9/2019	1,8 x 10 7.75 TCID 50	Acceptable
8026	Bioveta	24/9/2019	1,8 x 10 7.85 TCID 50	Acceptable
8126	Bioveta	24/9/2019	1,8 x 10 7.39 TCID 50	Acceptable
7826	Bioveta	11/9/2019	1,8 x 10 7.93 TCID 50	Acceptable
8126	Bioveta	11/9/2019	1,8 x 10 7.39 TCID 50	Acceptable
8126	Bioveta	11/9/2019	1,8 x 10 7.35 TCID 50	Acceptable
7826	Bioveta	11/9/2019	1,8 x 10 7.75 TCID 50	Acceptable
7926	Bioveta	11/9/2019	1,8 x 10 7.60 TCID 50	Acceptable

COMMENT / ADDITIONAL CLARIFICATION

The differences in numbers of ELISA, FAT and tetracycline detection tests between the technical and financial report is due to the vaccination area covered by the programme is bigger than the vaccination area approved for EU funding.

The difference in numbers of RTCIT tests between the technical and financial report is due to 1 sample was sent to the National Veterinary Research Institute (National Reference Laboratory) in Pulawy, but they have not invoiced it. So in the technical report this 1 test was included, but in the financial report it was excluded.

The costs of serology and biomarker tests performed in 2019 on foxes shot in 2018 and the costs of FAT and RTCIT tests performed in 2019 on samples taken in 2018 were included in the financial report as well.

The costs of the tests performed in 2020 on samples taken in 2019 were not included in the financial report.

There is a difference between number of units for vaccine purchase and distribution in Poland, because some vaccine doses were distributed manually free of charge.

1.9.1 SANTE Data Collection Platform - PRODUCTION • Contact us at SANTE-XMLGATE3@ec.europa.eu