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A B S T R A C T   

Spodoptera frugiperda (J.E. Smith) is the main pest of maize in Brazil and its control has been targeted by Bt maize 
hybrids. Generally, Bt maize hybrids possess the transgenic locus in a hemizygous condition, that is, containing 
only one copy of the Bt allele. However, studies have shown that maize hybrids with an additional transgenic 
allele, namely, in a homozygous state, increases transgenic protein expression. Our aim in this study was to 
evaluate whether the transgenic event TC1507 x MON89034 x NK603 in homozygosis increases Bt protein 
expression levels and, consequently, reduces S. frugiperda leaf-feeding injury and larval survival which affects 
maize grain yield. Leaf-feeding injury of S. frugiperda was 29% lower on homozygous hybrids relative to their 
isogenic hemizygous versions. Isogenic homozygous and hemizygous hybrids did not differ in grain yield in this 
study. S. frugiperda survivorship on homozygous hybrids was significantly lower than on their hemizygous 
isogenic versions (16.9% and 38.5%, respectively). Homozygous hybrids presented higher Cry1F, Cry1A.105, 
and Cry2Ab2 protein expression levels relative to their isogenic hemizygous versions (approximately 1.5-, 2.0-, 
and 2.5-fold, respectively). The Bt maize event TC1507 x MON89034 x NK603 in a homozygous state increases Bt 
protein expression levels and the control of S. frugiperda. Therefore, the deployment of homozygous transgenic 
maize hybrids to farmers is more desirable than the hemizygous versions.   

1. Introduction 

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is the 
primary pest affecting maize in Brazil, causing leaf injury and yield 
losses up to 57.6% (Cruz and Turpin, 1983; Cruz et al., 1999; Waquil 
et al., 2002; Niu et al., 2014). Genetically-modified (GM) maize hybrids 
with Bacillus thuringiensis (Bt) genes can decrease S. frugiperda infesta
tion levels on the field, increase yield (Siebert et al., 2012; Storer et al., 
2012; Frizzas et al., 2014; Moraes et al., 2015; Santos-Amaya et al., 
2015), and diminish insecticide use worldwide (Meissle et al., 2010; 
Benbrook, 2012). 

In the last decade, S. frugiperda resistance to Bt protein has increased 
due to the intense use of Bt maize hybrids (Storer et al., 2010; Tabashnik 
et al., 2013; Jakka et al., 2014; Huang et al., 2014), and studies have 
reported S. frugiperda field-evolved resistance to Cry1F (Farias et al., 
2014) and Cry1Ab (Omoto et al., 2016) in Brazil. In 2010, the Brazilian 
Technical Bio-Safety Commission (CTNBio) approved pyramided events 

in Brazil expressing multiple toxins to increase efficacy and delay 
resistance evolution (Zhao et al., 2003; Hardke et al., 2011; Huang et al., 
2014). One of these pyramided events, TC1507 x MON89034 x NK603, 
contains three Bt proteins: Cry1F, Cry1A.105 and Cry2Ab2 (ISAAA, 
2019). Due to protein similarity, reports have shown cross-resistance 
between Cry1F and other Cry1 proteins, such as Cry1A.105 and 
Cry1Ab; however, Cry1F did not present cross-resistance with Cry2Ab2 
(Bernardi et al., 2015; Horikoshi et al., 2016). Therefore, high-dose 
pyramided Bt events and the use of refuge are key strategies for the 
resistance management of S. frugiperda (Shelton et al., 2000; Andow, 
2008; Farias et al., 2015). 

The commercialization of Bt maize hybrids in Brazil started in 2008 
(James, 2009). Brazil produces more than 90 million tons of maize on 
approximately 17 million hectares (CONAB, 2019), and the overall use 
of genetically modified (GM) maize hybrids is responsible for approxi
mately 90% of the production (ISAAA, 2017). Breeding companies 
develop transgenic maize hybrids that are hemizygous for the transgene 
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(Guadagnuolo et al., 2006; Burkness et al., 2010, 2011; Caprio et al., 
2015), because the introgression of transgenic traits is a costly and 
time-consuming process when all elite inbred lines of a breeding pro
gram are taken into consideration (Morris et al., 2003). In hemizygous 
F1 maize hybrids, the transgenic locus presents only one copy of the 
transgenic allele, while the other allele is considered null (Guadagnuolo 
et al., 2006). This null allelic version in the transgenic locus occurs 
because a Bt trait in maize result from the insertion of an exogenous Bt 
allele in the maize genome; therefore, the genome does not possess an 
alternative allelic variation for the transgenic locus. 

An elite inbred line is generated by transgene introgression through 
the backcrossing method. It involves the crossing of a transgenic donor 
genotype and a recurrent parent (the elite inbred line) for several cycles 
of backcrossing. In each generation of backcrossing occurs the selection 
of inbred lines with the presence of the desired transgenic trait and 
greater proportion of the recurrent parent through marker-assisted se
lection (Venkatesh et al., 2015). After the recovery of the recurrent 
parent with the desired transgenic trait, the selected transgenic elite 
inbred line is self-pollinated so that the transgenic locus is homozygous. 
A hemizygous transgenic hybrid is obtained by crossing two inbred 
lines: a homozygous inbred line for the transgenic trait with a non-GM 
inbred line. This approach does not provide the highest levels of trans
genic protein expression (Caligari et al., 1993; James et al., 2002; 
Clough et al., 2006; Hood et al., 2012; Howard and Hood, 2014). 
However, a homozygous transgenic version of maize hybrids is obtained 
by crossing two transgenic inbred lines. This results in maize hybrids 
with the transgenic locus in a homozygous state, that is, with two 
transgenic alleles. Homozygous transgenic hybrids may present their 
maximum transgenic protein accumulation due the presence of an 
additional transgenic allele (Caligari et al., 1993; Streatfield et al., 2002; 
Clough et al., 2006). Previous studies have shown that the transgene 
zygosity of a plant in a homozygous condition increases the transgenic 
protein expression up to four fold when compared to a hemizygous 
version (James et al., 2002; Law et al., 2006; Hood et al., 2012). 

Zygosity studies in maize hybrids have been made considering cross- 
pollination and its impact on maize kernels (Chilcutt and Tabashnik, 
2004; Burkness et al., 2011), but it is still unclear whether the zygosity of 
Bt transgenes might influence Bt protein expression in maize plants 
(Caprio et al., 2015). To our knowledge, Bt homozygous maize hybrids 
are not commercialized yet. Thus, this study aimed to assess whether the 
number of Bt alleles in maize hybrids increases the expression levels of 
Bt proteins and S. frugiperda control, and affects grain yield. 

2. Materials and methods 

2.1. Genetic material 

The genetic material comprised five maize hybrids (A, B, C, D, and E) 
belonging to Corteva Agriscience. Each hybrid was generated in two 
isogenic versions: homozygous (HO) and hemizygous (HE) for the event 
TC1507 x MON89034 x NK603. In the pyramid, TC1507 is responsible 
for the production of Cry1F protein (cry1Fa2 gene) and tolerance to 
glufosinate herbicide (pat gene); MON89034 confers resistance to lepi
dopteran insects by the product of cry1A.105 and cry2Ab2 genes; and 
NK603 is responsible for glyphosate tolerance (cp4 epsps gene). In 
addition, one non-GM hybrid was defined as control (ACO), which is a 
conventional isogenic version of the hybrid A. Therefore, the 11 hybrids 
were designated as ACO, AHO, AHE, BHO, BHE, CHO, CHE, DHO, DHE, 
EHO, and EHE. 

To present two, one or no copies of the TC1507 x MON89034 x 
NK603 event, i.e., homozygous, hemizygous, and non-GM, respectively, 
each hybrid was produced in a specific manner. Transgenic homozygous 
hybrids were obtained by crossing two TC1507 x MON89034 x NK603 
homozygous inbred lines, while the hemizygous hybrids were obtained 
by crossing a transgenic homozygous inbred line with a non-GM inbred 
line. To obtain the non-GM version of hybrid A, two non-GM inbred lines 

were crossed. For instance, the isogenic versions of hybrid A were 
generated by the same parental inbred lines. To generate AHO, both 
parental inbred lines were transgenic; for AHE, only one parental inbred 
line was transgenic; for ACO, both parental inbred lines were non-GM. 
Thus, the difference between the versions of hybrid A is the presence 
of the transgenic trait in their parental inbred lines. 

2.2. Field experiments 

Two field experiments were carried out: one in the first growing 
season (sowing date: Sep 30th, 2015) and the other in the second 
growing season (sowing date: Feb 2nd, 2016), at the Experimental Farm 
of S~ao Paulo State University, Campus of Jaboticabal (UNESP/FCAV), 
Brazil (21�140S and 48�170W). Jaboticabal has a rainy summer and dry 
winter type of climate, classified as Aw (Rubbel and Kottek, 2010). 
Weather data were provided by the S~ao Paulo State University 
Agro-meteorological Station, which is about 1 km away from the site 
where the experiments were conducted (Supplementary Table 1). 

The experimental design was a complete randomized block with 
three replications. Each plot consisted of four 5-m-long rows, spaced 
0.5 m apart, and with 60 plants per plot, representing a population 
density of 60,000 plants ha� 1. The management of the experiments 
followed the maize crop recommendations for the region (Fornasieri 
Filho, 2007). Leaf-feeding injury of S. frugiperda in the field, under 
natural infestation, was assessed using a 0–9 scale, which the lowest 
score represents the absence of S. frugiperda infestation, while the 
highest score refers to the total destruction of the plant (Davis et al., 
1992). The scores of leaf-feeding injuries were given according to the 
average of 10 random plants of the two central lines of each plot, in the 
V6/V7 growth stage, approximately 35 days after sowing each experi
ment. There was no insecticide application. After harvesting, at the R6 
stage, the first and second growing season (March 2nd and July 4th, 
respectively), grain yield of each plot was weighed, standardized by 
correcting grain moisture to 13% and converted to kg ha� 1. 

2.3. Leaf tissue bioassays 

Bioassays were installed and conducted approximately 30 days after 
sowing each experiment at the Applied Ecology Laboratory of UNESP/ 
FCAV. Spodoptera frugiperda egg masses were collected in maize fields at 
the Experimental Farm of UNESP/FCAV, five days prior to sowing the 
field experiments. The egg masses were taken to the laboratory and 
maintained at 25 � 1 �C, under a daily photoperiodic cycle of 12:12 h 
(light: dark) during all phases of the bioassays. Larvae were reared using 
bean based diet similarly to Oliveira et al. (2006) until pupation. Pupae 
were separated by sex and five couples were placed per mating cage 
(10 cm diameter x 22 cm height). Adults were fed with a 9:1 solution of 
water and honey until oviposition. This field-collected population was 
used in all bioassays. 

Once the second generation of S. frugiperda was obtained, the bio
assays were conducted. The newest leaf with collar of the plants of each 
hybrid (V6/V7 growth stage) was used for each bioassay replication. 
Leaves were identified and kept in paper bags, taken to the laboratory 
and immersed in water solution with 0.5% of NaClO, rinsed in running 
water and dried with paper towels to avoid larval contamination by field 
pathogens. Afterwards, leaves were cut into pieces (approximately 
5.0 cm � 3.5 cm) and used to feed neonate larvae (<24 h) in the 
bioassays. 

For each bioassay, a deep well of a plastic tray (5.0 cm � 3.5 cm x 
4.0 cm) was used with a S. frugiperda neonate and a piece of leaf with the 
same dimension of the well’s bottom surface. The bioassay of the first 
season had three replicates and 10 individualized larvae per tray (total 
of 330 larvae), while the bioassay of the second season was performed 
with five replicates and 16 individualized larvae per tray (total of 880 
larvae). The bioassay design was a completely randomized block, 
because we could not accommodate all trays in a single shelf. After seven 
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days, we assessed survivorship of S. frugiperda, and growth inhibition by 
the number of larvae with length below 1.5 cm. Larvae that did not 
move at the touch of a fine camel-hair brush were considered as dead. 

2.4. Analysis of Bt protein abundance in maize leaves 

Absolute Cry1F protein concentration levels were quantified using 
10 plants from a separate plot of each homozygous and hemizygous 
maize hybrid at the V6/V7 growth stage. The samples were assayed with 
an ELISA test using the QualiPlate kit for Cry1F detection in maize and 
cotton (cat# AP-016, Envirologix, Portland, ME, USA). Quantification of 
Cry1F was performed by setting up a 7-point standard curve, in dupli
cate, with two blanks, along with three positive and three negative 
controls to determine the concentration of Cry1F in each sample. The 
Cry1F protein standard was provided by Corteva Agriscience, coded 
internally as TSN 302442. 

The relative expression of the gene products Cry1A.105 and Cry2Ab2 
was determined by peptide spectrometry analysis (HPLC-MS/MS). Only 
one replicate was used as the aim of the analysis was solely to confirm 
the high expression of the target proteins in the homozygous versions of 
the hybrids. Each replicate was comprised by twelve young plants (V2/ 
V3) of each hybrid. A pool of the leaves of each hybrid was collected and 
pulverized in liquid nitrogen. Proteins were then extracted with a 
sample buffer (125 mM Tris pH 6.8; 20% Glycerol; 1% SDS and 1% DTT) 
and precipitated in cold acetone for 16 h at � 30 �C. Protein quantifica
tion was determined based on Bradford (1976) protocol using bovine 
serum albumin (BSA) as standard. Prior to mass spectrometry analysis, 
the protein extract was digested with trypsin for 4 h at 37 �C. The 
extracted peptides were cleaned using C-18 spin columns (Thermo Sci
entific) according to the manufacturer’s instructions and then were 
dried down under vacuum centrifugation. Tryptic peptides were sepa
rated in a chromatographic gradient of 60 min under constant flow rate 
of 400 nL/min (EASY nLC 1000, Thermo Scientific) using a C18 
nano-column (15 cm 2 μm, 100 Å). Mass spectrometer (Q-Exactive, 
Thermo Scientific) was operated in the data-dependent acquisition 
mode for the ten most abundant peptide ions. Protein identification was 
carried out by spectral correlations approach against Zea mays genome 
and Cry1A.105 and Cry2Ab2 protein sequences. We used Sequest-HT as 
a search tool and the data were normalized according to NSAF 
(normalized spectral abundance factors) described in Paoletti et al. 
(2006). Protein relative expression was determined by spectral count
ing. The fold-change was calculated by dividing the relative expression 
of homozygous versions by relative expression of hemizygous versions. 

2.5. Data analysis 

Two orthogonal contrasts were applied to leaf-feeding injury of 
S. frugiperda in the field, grain yield, and survival of first-instar 
S. frugiperda. The first contrast compared the group of transgenic hy
brids (homozygous and hemizygous) with the non-GM hybrid, following 
the model: Y1 ¼ m1þ m2 � 2m3, while the second contrast, Y2 ¼ m1 �

m2, compared homozygous and hemizygous transgenic hybrids, where 
Y1 and Y2  ¼ contrasts between hybrids means; m1  ¼ homozygous hy
brids mean; m2  ¼ hemizygous hybrids mean; and m3  ¼ non-GM hybrid 
mean, by t-test. Each season was considered separately. Concentrations 
of Cry1F, Cry1A.105, and Cry2Ab2 of all homozygous and hemizygous 
versions were submitted to t-test. Expressions of Cry1F protein between 
homozygous and hemizygous versions of each hybrid were submitted to 
t-test. However, Cry1A.105 and Cry2Ab2 expressions were not submit
ted to t-test because there was only one replicate per hybrid, since we 
used the HPLC-MS/MS analysis only to confirm that the homozygous 
versions accumulated more of the proteins Cry1A.105 and Cry2Ab2 than 
the hemizygous versions. In addition, a multi-year analysis was per
formed combining both seasons for leaf-feeding injury of S. frugiperda in 
the field, grain yield, and survival of S. frugiperda neonates. The degrees 
of freedom of the hybrids and the interaction between hybrids and 

seasons were divided into three other sources of variation: homozygous, 
hemizygous, and the combination of the three groups (homozygous, 
hemizygous, and non-GM), designated as groups. All analyses were 
performed in R 3.3.1 (R Core Team, 2016). 

3. Results 

3.1. Cry1F, Cry1A.105, and Cry2Ab2 protein expression in the leaf 

All homozygous hybrids presented higher Cry protein concentrations 
when compared to their hemizygous isogenic versions. The mean leaf 
concentration of Bt proteins in homozygous hybrids were 54% for Cry1F 
(t1, 98 ¼ 4.06, p < 0.0001), 151% for Cry1A.105 (t1, 8 ¼ 7.12, p < 0.01), 
and 146% for Cry2Ab2 (t1, 8 ¼ 3.35, p < 0.0001) higher than the hemi
zygous versions (Fig. 1). Fold-change between homozygous and hemi
zygous hybrids for Cry1F, Cry1A.105, and Cry2Ab2 ranged from 1.49 to 
1.94, 1.81 to 7.83, and 2.31 to 2.62, respectively (Supplementary 
Table 2). 

3.2. Leaf injury in the field trials 

Leaf-feeding injury on homozygous transgenic hybrids was 29% 
lower than on their hemizygous versions (t2, 30 ¼ � 3.97, p < 0.0005) 
during the first growing season. Conversely, in the second season, such a 
difference was not observed. Transgenic hybrids were less injured than 
the non-GM hybrid regardless of the season (first: t2, 30 ¼ 9.63, 
p < 0.0001; second: t2, 30 ¼ 4.12, p < 0.0003) (Fig. 2A) (Supplementary 
Tables 3 and 4). 

3.3. Survivorship of S. frugiperda in the leaf tissue bioassays 

Survivorship of first-instar S. frugiperda was significantly reduced on 
homozygous hybrids when compared to their hemizygous versions in 
both seasons (first: t2, 30 ¼ � 2.41, p ¼ 0.0224; second: t2, 52 ¼ � 7.19, 
p < 0.0001). Moreover, mortality of first-instar S. frugiperda was higher 
on the transgenic hybrids than on the non-GM hybrid for both seasons 
(first: t2, 30 ¼ 8.33, p < 0.0001; second: t2, 52 ¼ 10.63, p < 0.0001) 
(Fig. 2B). Average survivorship for homozygous, hemizygous, and the 
non-GM hybrid was 16.9 � 1.6%, 38.5 � 2.08%, and 94.5 � 2.18%, 
respectively, combining the results of both seasons (Supplementary 
Tables 3 and 4). 

3.4. Grain yield 

Grain yield of homozygous and hemizygous did not differ in both 
seasons (first: t2, 30 ¼ 0.512, p ¼ 0.6122; second: t2, 30 ¼ � 0.247, 
p ¼ 0.807). The yield of transgenic hybrids was higher than that of the 
non-GM hybrid in the first season (t2, 30 ¼ � 2.26, p ¼ 0.0311). The yield 
loss of the non-GM hybrid in relation to the homozygous and hemizy
gous hybrids was approximately 25% and 23%, respectively, during the 
first season. The hybrids did not differ in grain yield in the second season 
(t2, 30 ¼ � 0.937, p ¼ 0.3560) (Fig. 2C) (Supplementary Tables 3 and 4). 

4. Discussion 

Spodoptera frugiperda control and leaf concentration of Cry1F, 
Cry1A.105, and Cry2Ab2 were higher on the homozygous hybrids than 
on their hemizygous versions, showing that the additional transgenic 
allele TC1507 x MON89034 x NK603 directly influenced the expression 
of Bt proteins. Indeed, an increase in the transgene zygosity of the maize 
hybrids caused an additive effect on the levels of Cry proteins in the leaf. 
The additive effect has also been reported for other transgenes (Caligari 
et al., 1993; James et al., 2002; Hood et al., 2012). 

Although the concentration of Bt proteins in the leaf increased, there 
was no decrease in grain yield in the homozygous hybrids, that is to say, 
the additional TC1507 x MON89034 x NK603 allele in the transgenic 
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locus did not cause a detectable energy cost for the plant that reduced 
grain production. In fact, grain yield of the homozygous hybrids was 
higher than the non-GM hybrid and similar to the hemizygous hybrids, 
revealing that Bt alleles protected maize grain yield against injuries 
caused by S. frugiperda. Indeed, in the absence of a selection pressure 
from S. frugiperda leaf injury, the transgene becomes a neutral factor to 
the fitness of the plant (Guadagnuolo et al., 2006), and as a result neither 
transgenic zygosity impairs maize grain yield based on our data. 

Despite high infestation levels of S. frugiperda during the first season, 
there was no difference in the grain yield of hemizygous and homozy
gous hybrids. Nevertheless, the use of homozygous hybrids could be 
incorporated in the resistance management of S. frugiperda, since their 
levels of Cry proteins expressions are higher than hemizygous hybrids, 
causing higher mortality rates of S. frugiperda. Although, in this study, 
neither zygosity of TC1507 x MON89034 x NK603 met the criteria of a 
high-dose event (Andow, 2008), homozygous versions could still be 
useful for delaying S. frugiperda field-evolved resistance to Cry proteins 
due to its increase in larval control. 

However, to better understand the effect of Bt zygosity in maize 
plants, new studies considering the effect of Bt transgenes on leaves and 
kernels, as well as on plant morphology and pollen viability should be 
considered, since a transgene could affect the phenotype of the plant 
(Saxena and Stotzky, 2001). To our knowledge, this is the only study 
that examines the effect of Bt zygosity on Bt expression levels in leaves of 
maize hybrids, though we did not examine other Bt proteins such as 
Cry1Ab and Vip3Aa20, and the effect of Bt pollen on non-Bt maize 
kernels in refuge areas. The effect of Bt zygosity in maize kernels has 
been studied, but Bt protein concentrations were not assessed (Burkness 
et al., 2011; Yang et al., 2014; Caprio et al., 2015). As kernel pericarps 

are an exclusively maternal tissue, and embryo and endosperm are tis
sues of maternal and paternal origin, more studies are required to assert 
precisely which tissue is expressing Bt proteins, and if distinct tissues of 
the kernel are expressing a sufficient amount of Bt protein that could fit 
the high-dose strategy. To clarify that, Burkness et al. (2011) did 
reciprocal crosses between hemizygous Bt11 maize hybrids with non-Bt 
hybrids as male and female parents. They found higher mortality of 
Ostrinia nubilalis (Hübner) on kernels of hemizygous Bt11 plants that had 
non-Bt plants as pollen donors, when compared to mortality on kernels 
of crosses of non-Bt plants with hemizygous Bt plants as pollen donors. 
Based on these authors’ results, we believe that the hemizygosity of the 
pericarp caused higher mortality on ears of the hemizygous Bt plants, 
since kernels of non-Bt hybrids present non-Bt pericarps. Correspond
ingly, in our study we found lower larval survival on leaves of homo
zygous hybrids in comparison to hemizygous versions that shows the 
effect of the additional transgenic allele, causing a double allelic TC1507 
x MON89034 x NK603 dose, without the confounding factors of 
maternal and paternal tissues found in the kernels. Furthermore, 
although there are no studies considering the increase of Bt protein 
expression due to additional Bt alleles in maize hybrids, some studies 
acknowledge a four-fold increase in the amount of transgenic human 
antibodies (Law et al., 2006) and industrial enzymes in homozygous 
versions of maize hybrids (Hood et al., 2012). 

A more severe infestation of S. frugiperda, resulting in higher scores 
of leaf-feeding injury, decreased grain production on the non-GM hybrid 
in the first season, though grain production of homozygous and hemi
zygous hybrids remained the same. Due to lack of rain, which is an 
important natural mortality factor, higher infestations of S. frugiperda 
typically take place during the second season in Brazil (Varella et al., 

Fig. 1. Overall means (�SEM) of Cry1F (ng cm� 2) (A), Cry1A.105 (relative abundance) (B), and Cry2Ab2 (relative abundance) (C) expression in leaves of homo
zygous and hemizygous TC1507x89034xNK603 maize hybrids. Each zygosity with different letters on top of the bars differ by t-test (p < 0.0001 for Cry1F, p < 0.01 
for Cry1A.105, and p < 0.0001 for Cry2Ab2). 
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2015). Notably, the main mortality factors in neonatal S. frugiperda 
larvae are predation, drowning, and dislodgement by rainfall (Varella 
et al., 2015). Contrary to the usual weather, the 2015/2016 growing 
season presented an initial drier period and a late wetter period. To 
illustrate, in the first season, we evaluated leaf-feeding injury of 
S. frugiperda in the beginning of November, when there was less rainfall 
in the previous days (i.e., in October there were only eight days with 
rain, totaling 149.7 mm of precipitation), which may have contributed 
to an increase in S. frugiperda infestation, and, therefore higher leaf 
injury. However, in the second season, infestation was lower than in the 
first season, and for instance, the assessment of leaf-feeding injury of 
S. frugiperda was performed in the beginning of March, when the number 
of days with rain and precipitation in February were 14 and 201 mm, 
respectively (Supplementary Table 1). Thus, abiotic factors, mainly 
rainfall, likely contributed to higher mortality of S. frugiperda eggs and 
neonatal larvae, leading to a lower rate of leaf-feeding injury of 
S. frugiperda in the second season in comparison to the first season. 

Resistance to Cry1F maize has occurred widely in Brazil due to the 
intensive use of TC1507 maize and low refuge compliance (Farias et al., 
2014), and because TC1507 is not a high-dose event (Farias et al., 2015). 
Furthermore, control failures with S. frugiperda on Cry1F maize have 
been reported since 2013 (Farias et al., 2014; Monnerat et al., 2015), 
and cross-resistance has been identified with other Cry proteins, such as 
Cry1Ab and Cry1A.105 (Bernardi et al., 2015). Since 2013, Brazilian 
farmers would rather buy Bt pyramided maize hybrids and seed com
panies in Brazil reduced considerably their production of single maize Bt 
events, such as the case of TC1507 expressing Cry1F (Cruz et al., 2013; 
Pereira Filho and Borghi, 2016). In this view, Cry2Ab2 likely had more 
of an impact on S. frugiperda than Cry1F and Cry1A.105 in the TC1507 x 
MON89034 x NK603 pyramid, since Cry2Ab2 does not present 
cross-resistance with Cry1 proteins (Bernardi et al., 2015; Horikoshi 
et al., 2016). Additionally, further studies with other Bt transgenes, 
single or pyramided, will determine a more precise relation between the 
additive effect of the additional transgenic allele and S. frugiperda 

Fig. 2. Means (�SEM) of leaf-feeding injury of 
Spodoptera frugiperda (score 0–9) (A), survival of 
first instar S. frugiperda (%) (B), and grain yield (kg 
ha� 1) of homozygous and hemizygous 
TC1507x89034xNK603 maize hybrids (C) and non- 
Bt hybrid (conventional), during the first and sec
ond seasons of 2015/2016, Jaboticabal, Brazil. 
Each season was submitted to t-test separately. 
Different letters on top of the bars differ each 
treatment by t-test (p < 0.05) according to orthog
onal contrast between transgenic hybrids, homo
zygous and hemizygous, and the conventional 
hybrid; and orthogonal contrast between homozy
gous and hemizygous hybrids.   
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control. Although the mortality of S. frugiperda did not reach the levels of 
the high-dose strategy (Huang et al., 2011), we observed that all larvae 
fed on homozygous and hemizygous hybrids presented growth inhibi
tion, with length less than 1.5 cm, whereas more than 85% of the larvae 
fed on the non-GM were longer than 1.5 cm. 

Our results revealed that homozygous transgenic maize hybrids 
increased the control of S. frugiperda because of the presence of an 
additional TC1507 x MON89034 x NK603 allele, which was the main 
reason for the higher concentration levels of Cry1F, Cry1A.105, and 
Cry2Ab2 proteins in the leaves. To the best of our knowledge, this is the 
first study investigating the influence of the number of Bt alleles in 
maize hybrids on Bt expression levels and S. frugiperda control. There
fore, the deployment of homozygous maize hybrids may be more 
desirable than the use of hemizygous versions, since control of 
S. frugiperda is enhanced while maintaining grain yield. In fact, the 
homozygous approach could be considered as a novel tool for insect 
resistance management strategies, since the extra Bt allele increases the 
concentration of Bt proteins in the leaf of homozygous maize hybrids, 
and as a consequence leaf-feeding injury and survivorship of 
S. frugiperda were reduced without diminishing the grain yield of the 
plants. To obtain homozygous hybrids for the Bt transgenes, both 
parental inbred lines of each hybrid must be converted to isogenic 
transgenic versions, presenting the transgenic locus in a homozygous 
state. This is a time- and money-consuming process that might restrain 
breeding companies from generating homozygous maize hybrids, espe
cially when pyramided events are involved. Nonetheless, of the use of 
homozygous hybrid seeds presents several benefits, such as the reduc
tion of S. frugiperda infestation and insecticide application, because both 
parental inbred lines will be carrying Bt transgenes. 
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