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H I G H L I G H T S

• GM crops may impact non-target
organisms in agricultural landscapes.

• Spatial determinants of GM risk
ares assessed using generic spa-
tial exposure-hazard and landscape
models.

• A Global Sensitivity Analysis is per-
formed for spatial worst-case scenarii.

• It confirms the importance of space
and GM pollen emission.

• It shows that the optimal spatial
distribution of GM depends on our
knowledge of NTO habitats.
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A B S T R A C T

The cultivation of Genetically Modified (GM) crops may have substantial impacts on populations of non-
target organisms (NTOs) in agroecosystems. These impacts should be assessed at larger spatial scales
than the cultivated field, and, as landscape-scale experiments are difficult, if not impossible, modelling
approaches are needed to address landscape risk management.
We present an original stochastic and spatially explicit modelling framework for assessing the risk at the
landscape level. We use techniques from spatial statistics for simulating simplified landscapes made up
of (aggregated or non-aggregated) GM fields, neutral fields and NTO’s habitat areas. The dispersal of toxic
pollen grains is obtained by convolving the emission of GM plants and validated dispersal kernel func-
tions while the locations of exposed individuals are drawn from a point process. By taking into account the
adherence of the ambient pollen on plants, the loss of pollen due to climatic events, and, an experimentally-
validated mortality-dose function we predict risk maps and provide a distribution giving how the risk varies
within exposed individuals in the landscape.
Then, we consider the impact of the Bt maize on Inachis io in worst-case scenarii where exposed individuals
are located in the vicinity of GM fields and pollen shedding overlaps with larval emergence. We perform a
Global Sensitivity Analysis (GSA) to explore numerically how our input parameters influence the risk. Our
results confirm the important effects of pollen emission and loss. Most interestingly they highlight that the
optimal spatial distribution of GM fields that mitigates the risk depends on our knowledge of the habitats of
NTOs, and finally, moderate the influence of the dispersal kernel function.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, one of the most successful bio-pesticides for insect
control is the bacterium Bacillus thuringiensis (Bt) which, upon
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sporulation, produces insecticidal proteins that belong to the Cry
and Cyt families and are mostly active against larval stages of dif-
ferent insect orders (Bravo et al., 2011). This biocontrol agent or its
insecticidal products can be sprayed and used in conventional and
organic crop systems and, Cry expressing genes from the bacterium
have been introduced into transgenic commercial crops to create
genetically modified (GM) insect tolerant varieties (Mendelsohn et
al., 2003). Among them, GM maize varieties producing Bt Cry pro-
teins (e.g. Monsanto’s MON810, Syngenta’s Bt11 and Pioneer’s 1507
Bt maize (Romeis and Meissle, 2011)) introduced for controlling the
European Corn Borer, a pest that causes substantial losses, have been
some of the most examined GM crops. Each of these Bt maize pro-
duces a specific insecticidal Cry protein (i.e. Cry1Ab for MON810
and Bt11 and Cry1F for 1507) whose impact on insect may depend
on both the protein and the targeted species (Bravo et al., 2011).
Moreover, whereas all these GM plants produce the toxic proteins
in most of their plant tissues the concentrations can vary signifi-
cantly between tissues within a plant, and also, between varieties
(Mendelsohn et al., 2003).

Although the Bt maize primarily targets pests that are detrimental
to the crop, the Bt toxin is also active against some non-target bene-
ficial, neutral or patrimonial species that should be protected. As the
Bt toxin is also expressed in pollen (Felke et al., 2010), which is dis-
persed by wind outside maize fields (Angevin et al., 2008) and can
reach habitats of non-target organisms (NTOs) that may be exposed
to the xenobiotics (EFSA, 2015; Hofmann et al., 2014), the cultivation
of GM maize represents a risk toward non-target populations living
in agroecosystems. While the controversial example of the impact
of Bt maize on the monarch butterfly (Danaus plexippus) has led to
several studies (Losey et al., 1999; Pleasants et al., 2001; Sears et
al., 2001), the conservation of NTOs exposed to GM crops is still a
debated subject (Holst et al., 2013; Kruse-Plass et al., 2017; Lang and
Otto, 2010; Perry et al., 2013, 2017, 2012, 2010).

Risk assessment, which is the determination of quantitative or
qualitative estimate of risk related to a recognised hazard, is a key
component of public policy making for the authorization of new bio-
logical or chemical compounds used in human activities (e.g. indus-
trial chemicals, pesticides or biotechnology-based plants) (Suter II,
2016). Regarding environmental or ecological risk assessment (ERA)
several components should be considered, i) the identification and
characterization of the hazard, ii) the locations of the xenobiotics
sources, iii) the dispersal mode, iv) the exposed populations and v)
the mode of exposure (Andow and Zwahlen, 2006). Albeit the risk
assessment process requires expert advice, the use of statistical tools
and mathematical models is generally fundamental for quantifying
risk and testing management strategies. As xenobiotics emitted by
anthropic activities generally have the potential to spread over mid
or long distances, it is now recognised that efficient ERAs should be
carried out at the landscape scale (Angevin et al., 2008; Focks, 2014;
Gilligan et al., 2007; Graham et al., 1991; Topping et al., 2015).

Several models have been developed for assessing the risk of Bt
maize on non-target Lepidoptera (Holst et al., 2013; Lang et al., 2015;
Perry et al., 2010; Sears et al., 2001) and their outputs have been
often considered for scientific advice, for instance by the Panel on
Genetically Modified Organisms of the European Food Safety Author-
ity (EFSA) (EFSA, 2010, 2012, 2015, 2016). Nevertheless, none of them
considered a spatial modelling framework, such as those developed
for coexistence studies with explicit models for the dispersal pro-
cess and the spatial structure of the landscape (Klein et al., 2003;
Lavigne et al., 2008). The importance of considering explicitly space
to understand and predict the behaviour of ecological systems driven
by dispersal mechanisms and spatial interactions has been demon-
strated by numerous works (Bolker et al., 2000; Durrett and Levin,
1994; Filipe and Maule, 2004) and spatial models are thus recog-
nised to be central for improving ERA at the landscape level (Focks,
2014; Graham et al., 1991; Papaïx et al., 2014b; Topping et al., 2016).

Therefore, the management of GM crops at the landscape level for
protecting NTOs is still at an early stage of development and the
improvement of models is still needed to support it (Lang et al.,
2015).

In this study we concentrate on the spatial determinants of the
risk for worst-case scenarii where exposed individuals are located in
the vicinity of GM fields and when pollen shedding and larval emer-
gence overlap. We first present an original spatial and stochastic
modelling framework for assessing the risk of GM crops on spa-
tially distributed NTOs in agricultural landscapes. The framework
combines i) tools of spatial statistics and stochastic geometry for
structuring simplified agricultural landscapes and simulating the
locations of exposed individuals, ii) a method based on a convolu-
tion product and dispersal kernels for predicting the spread of toxic
Bt pollen grains in the landscape, and iii) a dose-mortality relation-
ship for assessing the risk of mortality. Then, we consider the impact
of the Bt maize MON810 on the peacock butterfly Inachis io, a typi-
cal European NTO. We perform a Global Sensitivity Analysis (GSA) to
assess numerically the influence of the spatial structure of the land-
scape, pollen emission, dispersal, adherence and loss on the mean
and the standard deviation of the individual risk of mortality. We
finish the paper by discussing our work and its interest for ERA and
the management of GM crops at the landscape level.

2. Material and methods

2.1. Typical biological system

Following previous studies (Holst et al., 2013; Lang et al., 2015;
Perry et al., 2012, 2010) we considered the example of the impact
of the GM maize (Zea mays) MON810, which expresses the Cry1Ab
insecticidal protein, on the peacock butterfly (Inachis io) for which an
empirical dose-mortality relationship was established (Felke et al.,
2010). I. io is an important European patrimonial colourful butter-
fly which feeds on a wide variety of flowering plants (nectariferous
plants) and lay eggs on the leaves of the host plant Urtica dioica
(i.e. nettle) (Pullin, 1986). In intensive agricultural systems nettle is
essentially distributed on non-cultivated field margins. Given that
the pollen of GM maize spread beyond cultivated fields and reach the
habitat of patrimonial butterfly (e.g. field margins), I. io larva feeding
on nettle can ingest toxic pollen grains and exhibit lethal or sublethal
physiological damages.

2.2. Spatial exposure-hazard and landscape models

2.2.1. Overall presentation
The modelling framework consists of four stochastic and deter-

ministic steps that are illustrated in Fig. 1 and detailed below. First,
a landscape made up of GM fields, neutral fields and larvae habitat
areas, where host plants are located, is drawn from a stochastic spa-
tial process (Fig. 1A). Second, the spatial distribution of the amount of
pollen, after pollen shedding and aerial dispersal, is obtained through
a deterministic process that aggregates the temporal dynamic of
pollen shedding in one step and integrates the contribution of all
emitting sources (i.e. GM maize fields) in the landscape (Fig. 1B).
Third, a map of the risk is calculated using a dose-mortality rela-
tionship (Fig. 1C). Fourth, the spatial distribution of exposed larvae
is drawn from a stochastic spatial point process on habitat areas
(Fig. 1C). Finally, the mean and the standard deviation of the risk
are both extracted from the resulting distribution describing the
probability of mortality (i.e. the risk) of exposed individuals in the
landscape (Fig. 1D).

2.2.2. Simulation of landscapes
A stochastic landscape simulator was developed assuming that

i) the landscape is made of convex plots, ii) fields can be either
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Fig. 1. Illustration of the steps of the spatially-explicit exposure-hazard model. A) Structuration of the landscape made of GM fields (green polygons), neutral zones (white
polygons), and habitat areas (red polygons). B) Simulation of pollen dispersal using Eqs. (1) and (2) (maps show the amount of pollen deposited on host-plants in the log-scale).
C) Risk map and draw of the spatial distribution of individuals on host-margins (blue points). D) Output distributions describing the between-individuals risk of mortality and
extraction of the mean Ym and the standard deviation Ysd . a), b), c) and d) represent four contrasted situations regarding the spatial aggregation of GM fields and the location of
host-margins in relation to GM fields. Landscapes where simulated with q = {2500, 2500, 2500, 30} and t = {0, 0.18, −0.18, 0.1} respectively.

cultivated with GM maize, and thus emit toxic pollen grains, or non-
emitting neutral ones and iii) the host plants of exposed larvae are
only located on field margins thereafter called host-margins. Fur-
thermore the landscape model was tuned to allow the control of
i) the spatial aggregation of emitting fields, ii) the proportion of GM
fields, iii) the location of host-margins in relation to GM fields, and,
iv) the width of host-margins.

The landscape is first structured by partitioning a 5000 × 5000m2

domain with a Voronoi tessellation on I seed points drawn from a
binomial homogeneous spatial point process (Chiu et al., 2013; Illian
et al., 2008). More realistic tessellations could be used for drawing
the geometry of agricultural fields (Kiêu et al., 2013), but it has been
shown that Voronoi tessellations based on binomial point processes are
relevantforassessingtheinteractionbetweenthespatialarrangement
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of the landscape and the dispersal of pollen grains (Lavigne et al.,
2008; Le Ber et al., 2009). Then, for a given proportion of GM fields p
we draw both the spatial distribution of GM fields and host-margins
on the set of polygons and segments defined by the tessellation using
marked polygonal and point processes, and a thresholded stationary
spatial Gaussian process with a Matérn covariance function whose range
parameter q controls the spatial aggregation of emitting fields. After
having set a first threshold of the Gaussian process that appropriately
allocates the GM fields, the host-margins are defined by using another
threshold which is dependent on the first one and controlled by the
parameter t. Finally, we add thickness to host-margins by dilating
the segments with thicknesses drawn from a Gamma distribution
parametrised with its mean u (i.e. the mean width of host-margins)
and a variance empirically fixed to 4. A full mathematical description
of the landscape model which enables the simulation of a continuum
of situations illustrated in Fig. 1A and an illustration of the effects
of the parameters on the spatial structure of landscapes are given in
Appendix A1.

2.2.3. Simulation of pollen dispersal
The accumulated number of Bt pollen grains in the ambient air

and located at position (x, y) is defined by the convolution product:

Ra(x, y) =
∫ ∫

E(x′, y′)K(x − x′, y − y′)dx′dy′ = E ⊗ K(x, y), (1)

where K is a dispersal kernel function (Filipe and Maule, 2004; Kot
et al., 1996; Nathan et al., 2012) modelling the density probability
function of the deposit locations of particles released from a point
source, and E is the total number of pollen grains emitted by square
metre during flowering.

In the example of Lepidoptera larvae, as susceptible individuals
ingest transgenic pollen grains that are present on the leaves of host-
plants (Lang and Otto, 2015), an individual on a host plant located
at position (x, y) is not exposed to the amount of pollen Ra(x, y) of
the ambient air. Indeed, only a fraction of the total amount of pollen
adheres on leaves and climatic events (e.g. rain or strong wind)
can cause significant loss (Hofmann et al., 2016; Holst et al., 2013;
Pleasants et al., 2001). Thus, we assume that the amount of toxic
pollen R(x, y) at position (x, y) is obtained from:

R(x, y) = Ra(x, y) y (1 − x) (2)

where y and x are respectively the percentage of pollen that adheres
to leaves and the total loss of pollen. While one could consider that y
and x could be aggregated into one single parameter, they represent
distinct processes with different parameter range (Pleasants et al.,
2001) and might have contrasted influences on the risk.

Albeit some dispersal kernels have already been fitted to exper-
imental field data (Klein et al., 2003; Lavigne et al., 2008), pollen
dispersal is still a discussed topic when evaluating the risk of Bt
maize on NTOs (EFSA, 2015; Hofmann et al., 2014) and none of the
proposed models integrates explicitly the dispersal process. There-
fore, to assess the influence of the kernel on the risk we tested four
contrasted kernel functions that mainly differ at short and long dis-
tances: i) an isotropic Normal Inverse Gaussian (NIG) kernel (Klein et
al., 2003), ii) an anisotropic NIG that considers wind, iii) a Bivariate
Student (2Dt) kernel (Lavigne et al., 2008) and iv) a Geometric ker-
nel (Devaux et al., 2005). A full mathematical description is given in
Appendix A2.

2.2.4. Risk of mortality
A risk map providing the probability of mortality Pdeath (i.e. the

risk) at every location is calculated from R(x, y) and an empirical

dose-mortality relationship fitted for I. io and considered by previous
modelling works (Perry et al., 2010):

Pdeath =
e−9.304+2.473log10(D)

1 + e−9.304+2.473log10(D)
(3)

where D is the concentration of maize MON810 pollen grains on the
location of the larva (cm−2).

A distribution describing how the risk of mortality varies among
exposed individuals is obtained by simulating their locations with a
binomial homogeneous point process of 500 points on host-margins,
and assessing the risk of mortality (i.e. Pdeath) for each individual-
point (Fig. 1C). To limit border effects induced by the periodic
boundary conditions used in the numerical method for calculating
pollen dispersal (see Appendix A2), the locations of individuals are
restricted to the habitat zones located only in a 4750 × 4750m2 box
(none of the exposed larvae is close to the borders of the landscape).

2.3. Numerical simulations and Global Sensitivity Analysis (GSA)

We assessed the influence of our input parameters on the risk
using numerical simulations and a GSA. Sensitivity analysis (SA)
methods allow to study how the uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model
input (Saltelli et al., 2008). These methods are generally used to
determine the most influencing input variables, detect some inter-
action effects within the model, or, verify and understand complex
models (Faivre et al., 2013).

Our input parameters of interest consisted of eight continuous
input parameters related to pollen emission, adherence, loss, to the
spatial arrangement of the landscape and, one categorical variable
(i.e. the dispersal kernel K) (Table 1). As our model is stochastic it
gives a distribution of the risk in output. For this study we sum-
marised this distribution by its mean Ym and standard deviation Ysd

(Fig. 1D). To perform a GSA on these two outputs we first designed
a numerical experiment, based on an optimal low-discrepancy Latin
Hypercube Sample of 1000 points with 10 replicates of each point
(Faivre et al., 2013), which was repeated for each of the four dis-
persal kernel functions. Prior distributions were defined for each
continuous input parameters of the model before running the simu-
lations (Table 1 & Appendix A3). For the parameters related to pollen,
the input distributions were chosen according to the literature. The
intensity of pollen emission E was obtained by fixing plant den-
sity to 7plant.m−2 and considering only the number of pollen grains
produced per plant Ep (E = 7Epgrains.m−2). For Ep the available
knowledge allowed the construction of a realistic Gamma distri-
bution (Angevin et al., 2008; Ricci et al., 2012) (Table 1). For the
percentage of pollen lost x and the percentage of pollen adher-
ing on leaves y, that are both still difficult to estimate, we tuned
two uniform distributions based on orders of magnitude given by
Pleasants et al. (2001) (Table 1). The input distributions of param-
eters that control the structure of the landscape were empirically
chosen. For the proportion of GM fields p, the number of fields I and
the mean width of host-margins u we tuned uniform distributions
that allowed us to investigate a continuum of situations between
i) low and high proportion of fields cultivated with Bt maize, ii) small
and large plots and iii) narrow field margins and larger habitat that
could represent refuges for NTOs. The use of a U-shaped distribution
for the range parameter q made possible the continuous exploration
of the effect of the spatial aggregation of GM fields while promoting
extreme disaggregated and aggregated cases. Finally, as we chose to
focus on NTOs that are the most at risk, i.e. lying in the vicinity of
GM fields, we tuned a uniform distribution for t that allowed us to
investigate a range of landscapes structure between situations where
host-margins are inside or contiguous GM fields, and ones where
host-margins are located at mid-distances (Fig. 1 & Appendix A1).
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Table 1
Input parameters considered for the Global Sensitivity Analysis.

Parameter Units Input values Source

Ep Total amount of pollen produced per plant pollen grains.plant−1 C(mean = 8.106, sd = 4.106) (Angevin et al., 2008; Ricci et al., 2012)
x Percentage of pollen lost % U(0.2, 0.8) (Pleasants et al., 2001)
y Percentage of pollen adhering on leaves % U(0.3, 0.6) (Pleasants et al., 2001)
p Proportion of GM fields % U(0.3, 0.8) Empirically tuned
I Number of fields U(50, 500) Empirically tuned
u Margin width m U(1, 30) Empirically tuned
t Location of host-margins related to GM fields U(−0.18, 0.18) Empirically tuned
q Range parameter m 1 + 2999.Beta(0.3, 0.3) Empirically tuned
K Dispersal kernel function isotropic and anisotropic NIG, 2Dt, Geometric (Devaux et al., 2005; Hofmann et al., 2014;

Klein et al., 2003; Lavigne et al., 2008)

Although the two parameters of the sigmoid function (i.e. eq(3))
used to predict the individual risk of mortality could have also been
introduced in the GSA, in this study we kept them fixed. This choice is
justified by our main interest on the spatial determinants of the risk
rather than providing accurate risk predictions. Furthermore, consid-
ering the specific case of the impact of maize MON810 on I. io and
the fitted dose-response function makes the comparison with previ-
ous works easier. While fixing a few parameters is not unusual when
applying SA methods, one could argue that it is not a true GSA but
rather a quasi-GSA.

The Sensitivity Indices (SIs) (Sobol, 2001) for the mean risk Ym and
the variability of the risk Ysd were estimated using separate meta-
models with second-order interactions (Faivre et al., 2013). We used
Generalized Linear Models (Gamma distribution and log link func-
tion) and considered {q, p, I,y,x, Ep, t, u} as continuous predictors
and the effect of the dispersal kernel K as a categorical variable with
four levels (see Appendix A3). SIs were obtained by calculating the

deviance explained by the parameters and their interactions. All the
simulations and analyses were performed using the R free software
(R Core Team, 2015).

3. Results

The output of the simulations provided distributions of the mean
Ym and the standard deviation Ysd of the individual risk of mor-
tality in the landscape (Figs. 2 & 3). Their means were Ȳm =
{0.056, 0.064, 0.037, 0.054} and ¯Ysd = {0.036, 0.041, 0.030, 0.032}
for respectively the isotropic NIG, anisotropic NIG, 2Dt and the Geo-
metric kernel. The output distributions of Ym and Ysd all exhibited
a positive skewness and the Leptokurtic behaviour of some distri-
butions suggests that the occurrence of situations with substantial
higher mortality and uncertainty is likely. Our simulations, that
mainly aimed at exploring some spatial components of the risk
rather than providing accurate risk predictions, suggested a mean
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Fig. 2. Histograms representing the distributions of the mean individual mortality Ym for the four dispersal kernels considered in the GSA : A) NIG, B) NIG with wind, C) 2Dt and D)
Geometric. For each distribution the vertical black line shows the mean of the distribution whereas the vertical dotted line displays the 0.95-Quantile. The values of the mean, the
Kurtosis and the 0.95-Quantile of the distributions are Ȳm = {0.056, 0.064, 0.037, 0.054}, Kurt[Ym] = {3.10, 2.50, 4.11, 2.71}, and Q95[Ym] = {0.17, 0.18, 0.11, 0.16} respectively
for A), B), C) and D).
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Fig. 3. Histograms representing the distributions of the standard deviation of the individual mortality Ysd for the four dispersal kernels considered in the GSA : A) NIG, B)
NIG with wind, C) 2Dt and D) Geometric. For each distribution the vertical black line shows the mean of the distribution whereas the vertical dotted line displays the 0.95-
Quantile. The values of the mean, the Kurtosis and the 0.95-Quantile of the distributions are ¯Ysd = {0.036, 0.041, 0.030, 0.032}, Kurt[Ysd] = {3.17, 2.27, 3.21, 3.30}, and Q95[Ysd] =
{0.085, 0.096, 0.072, 0.074} respectively for A), B), C) and D).

risk that is a little higher than those obtained by Perry et al. (2010)
with a semi-spatial empirical model for pollen spread in simpler
landscapes.

The metamodelling approach allowed us to quantify the SIs for
Ym and Ysd (Table 2 & Fig. 4A). While for the mean risk Ym our meta-
model was able to explain 71% of the deviance, it only explained 56%
of the deviance for the standard deviation of the risk Ysd (Table 2). The
introduction of higher order interactions and quadratic terms did not
substantially reduce the residual deviances. Not surprisingly, the GSA
pointed out the importance of parameters directly related to the level
of pollen lying on the leaves of host plants on both the mean risk and
its variability (Table 2 & Fig. 4A). Indeed, the total amount of pollen
produced per maize plant Ep, the losses x, and to a lesser extent, the
adherence of pollen y had a strong influence on Ym (1st order SI of
15.8, 9.7 and 2.4 respectively) and were the most influential param-
eters for Ysd (1st order SI of 25.4, 13.9 and 3.8 respectively) (Table 2).

Nevertheless, these parameters showed no substantial interactions
with other parameters (Fig. 4A). The difference in the SIs of y and x,
that have a similar influence in Eq. (2), is explained by their distinct
input distributions (Table 1).

The dispersal kernel K had a significant effect on both Ym and
Ysd (1st order SI of 3.8 and 2.3 respectively) but, i) no substantial
interactions with other parameters were detected and, ii) it appeared
to be only the sixth and fifth most influential input parameter on Ym

and Ysd (Table 2) respectively. The two most visible effects were i) the
little decrease in Ym induced by the 2Dt which may be explained by
its behaviour at very short distances (more dense before 2 m (Lavigne
et al., 2008) where only a small fraction of exposed individuals were
located among the simulated cases (Fig. S1)), and, ii) the effect of the
anisotropic NIG which boosted Ysd.

The GSA also highlighted a strong influence of three parameters
involved in the spatial structure of the landscape. Indeed, whereas

Table 2
Sensitivity Indices for the mean Ym and the standard deviation Ysd of the landscape-scale risk (SI higher than 5 are in bold).

Parameter Ym (R2=0.71) Ysd (R2 = 0.56)

Deviance 1st order SI 2nd order SI Deviance 1st order SI 2nd order SI

Ep 7531 15.8 0.3 7148 25.4 0.3
x 4637 9.7 0.2 3927 13.9 0.3
y 1144 2.4 0.3 1059 3.8 0.3
p 137 0.3 0.4 <0.1 <0.1 0.1
I 69 0.1 0.5 26 0.1 0.3
u 3217 6.8 0.5 1459 5.2 0.4
t 9686 20.3 11.1 387 1.4 1.7
q 4 <0.1 10.8 317 1.1 1.2
K 1791 3.8 0.4 635 2.3 0.5
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Fig. 4. Display of (A) Sensitivity Indices of our model, (B) the changes in Ym with the location of host-margins t, (C) the changes in Ym with the mean width of host margins u, and
(D) the interaction between the location of host-margins and the range parameter t ∗ q. A.1) represents SIs for the mean individual mortality Ym while (A.2) shows those for the
standard deviation Ysd . The SIs are obtained by dividing the deviance of parameters by the total deviance of the metamodel. First first-order SI are represented in dark-grey while
second-order indices are in light-grey. In (B & C) the data (model outputs) are represented with black dots and predictions of the metamodel in red. D) shows how the mean risk
changes with the location of host-margins and the range parameter as predicted by the metamodel. Dark blue indicates low risk whereas red corresponds to higher mean risk.

the number of fields I and the proportion of GM fields p poorly
influenced Ym (SItot = 0.6 & 0.07 respectively) and Ysd (SItot = 0.4
& 0.01 respectively) (Fig. 4A & Table 2), the location of host-margins
in relation to GM fields t, the spatial aggregation of GM fields q, and
the width of host-margins u influenced significantly Ym (SItot = 31.4,
10.8 & 7.3 respectively), and in a lesser extent, Ysd (SItot = 3.1,
2.3 & 5.6 respectively) (Table 2). Despite the fact we concentrated on
exposed NTOs the most at risk and did not consider long distances,
a limited positive repulsiveness (t > 0) already reduced the risk
(Fig. 4B). The range parameter q that controls the spatial aggregation
of emitting fields had an important effect on Ym through its inter-
action with t (2nd order SI = 10.8). Logically, landscapes with
aggregated GM fields and habitat areas located away from them miti-
gated the risk (Fig. 4D). However, this interaction also suggested that
if the location of habitat areas cannot be managed or is unknown
(no control of t) it might be, on average, relevant to disaggregate
Bt fields in the landscape to prevent the occurrence of hazardous
situations (Fig. 4D). Finally, in line with previous findings and sug-
gestions (Perry et al., 2010; Pleasants et al., 2001) the observed effect
of host-margins width u shows that even a small increase in the size

of habitat areas (e.g. 5 m) may help to reduce significantly the risk
(Fig. 4C).

4. Discussion

In this study we focused on the role of space in landscape ERA
by considering spatial exposure-hazard and landscape models in
worst-case scenarii where individuals are temporally and spatially
exposed to toxic particles. In a context where the protection of NTOs
exposed to GM crops is still discussed among the scientific commu-
nity (EFSA, 2016; Hofmann et al., 2016; Holst et al., 2013; Kruse-Plass
et al., 2017; Perry et al., 2013, 2017, 2012), this work provides a
methodological contribution to model-based ERA, gives insight into
the spatial determinants of the risk which might be considered for
the design of mitigation strategies at the landscape level and, points
out the components that would require strong attention in further
modelling studies and data collection. Albeit this study was carried
out for the specific case of Bt maize on the typical NTO I. io, our
models may apply to other instances that involve several sources
of spreading toxic particles and immobile exposed individuals in a
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landscape (e.g. the risk of pesticides on NTOs (Topping et al., 2015,
2016)). For the ecological impact of GM crops, known variations in
the susceptibility of species and in the toxicity of Cry proteins pro-
duced by Bt crops (e.g. the maize 1507 expressing the Cry1F protein
versus the maize MON810 that produces the Cry1Ab) may modu-
late the highlighted effects (EFSA, 2012; Perry et al., 2012), but, we
believe that our results may be qualitatively generic for various NTOs
exposed to Bt pollen in agroecosystems.

Regarding previous studies on the impact of GM Bt maize on non-
target Lepidoptera our modelling framework exhibits some original
components. First, it expands previous models of exposure (Holst
et al., 2013; Lang et al., 2015; Perry et al., 2012, 2010) to a spa-
tial version with an explicit model for the wind-borne dispersal of
pollen grains. Albeit several models have been developed and vali-
dated against experimental data for maize pollen dispersal (Arritt et
al., 2007; Klein et al., 2003), the models used for assessing the impact
of GM crops on NTOs either ignore this spatial process (Holst et al.,
2013), or, only consider an empirical function that describes a disper-
sal gradient (i.e. how the amount of pollen change with the distance
to the closest emitting field) (Hofmann et al., 2016; Perry et al., 2012;
Pleasants et al., 2001). As it assumes a perfect mixing between inter-
acting individuals (here emitting Bt maize plants and exposed larvae)
the mean-field approximation of non-spatial models might lead to
overestimations of the risk when NTOs are not located in emit-
ting fields (see Section 3 in Appendix A2). Semi-spatial approaches
based on empirical dispersal gradients give a robust description of
pollen deposition patterns recorded during specific experiments but,
as they do not integrate the contribution of every sources with the
dispersal process, can fail to predict the effects of both the land-
scape and the intensity of pollen emission on the spatial distribution
of pollen (Klein et al., 2006; Lavigne et al., 2008). Thus, we believe
that our explicit dispersal model, which was inspired by theoretical
works (Bolker et al., 2000; Coville, 2015; Durrett and Levin, 1994;
Filipe and Maule, 2004) and models developed for investigating the
coexistence of GM and non-GM crops (Angevin et al., 2008; Klein et
al., 2003, 2006; Lavigne et al., 2008), is likely to improve landscape-
scale predictions and feed the discussion on dispersal mechanisms
for risk assessment (EFSA, 2015; Hofmann et al., 2014). Second, in
order to investigate the effect of the spatial arrangement of land-
scapes we have used tools from spatial statistics to build an original
stochastic landscape generator. While such methodology only pro-
vides a simplified representation of real agricultural landscapes, it
captures key components of their spatial arrangement and is relevant
to study the interaction between landscape structure and spatial
population dynamics (Lavigne et al., 2008; Le Ber et al., 2009; Papaïx
et al., 2014a). In this work we designed a model that concentrates on
worst-case scenarii with exposed individuals located at short or mid-
distances to the closest GM field and, we controlled and varied only a
few characteristics of the landscapes. However, existing methods of
stochastic geometry (Chiu et al., 2013) and optimisation algorithms
can be used to create more complex landscape models and assess
in silico the influence of other descriptors on the risk (e.g. insecti-
cide treated fields, host plant density, non-Bt maize fields) (Parisey
et al., 2016). Third, in our model the exposed individuals are discrete
(individual-based model (Durrett and Levin, 1994)) and two sources
of spatial stochasticity are introduced when simulating landscapes
and individual locations. Thus, it provides information at the indi-
vidual level and gives a distribution of the between-individuals risk
variability which is recognised to be important in quantitative ERA,
for instance to design and evaluate management strategies (Suter II,
2016).

After having presented our model we considered the typical
example of the impact of the maize MON810 on I. io and performed a
GSA to assess the influence of our input parameters on the mean and
the standard deviation of the risk at the landscape level. Although
we did not mean to provide accurate risk predictions, our results

suggested a mean risk in the same order of magnitude of previous
works (Perry et al., 2012, 2010). However, the output distributions of
our in silico analysis pointed out the likely occurrence of situations
with significant higher mortality and variability which illustrates
the difficulty of managing the risk at the landscape level. Then, as
suggested by numerous empirical and theoretical studies (Coville,
2015; EFSA, 2010; Perry et al., 2010; Thomas and Jones, 1993) the
GSA showed the substantial effect (without interactions with other
parameters) of the size of the habitat zones, where individuals may
ingest the toxic pollen (Fig. 4A&C). While it is known that large refuge
areas (e.g. meadows) promote the conservation of butterfly popula-
tions, a limited increase in the size of field margins with host plants
also seems to support the protection of NTOs (see the decrease of
the risk for small distances in Fig. 4C). Unsurprisingly, the GSA high-
lighted the main role of the location of host-margins in relation to
emitting fields. Furthermore, the results also pointed out the sub-
stantial interaction between the spatial aggregation of GM fields and
the location of host-margins. Landscapes with aggregated GM fields
and habitat areas located away from GM crops would logically pro-
mote a decrease in the risk. However, if the spatial distribution of
host plants is unknown, disaggregating GM fields may support risk
mitigation. In practice, to overcome the lack of knowledge about the
location of host plants or exposed individuals it would be interest-
ing to manage the distribution of habitat zones (field margins or
refuges) by sowing host plant species in suitable locations in the
landscape. The GSA also exhibited the expected substantial effects
of pollen emission, adherence and loss on both the mean and the
variability of the risk (Table 2). Nevertheless, these parameters are
generally highly variable and unfortunately almost impossible to
control. Despite that, a better quantification of these processes would
be important to improve quantitative predictions and decrease the
uncertainty due to the lack of knowledge in modelling approaches
(Suter II, 2016). Perhaps non-intuitively regarding the current debate
about pollen dispersal for evaluating the risk of Bt maize (Hofmann
et al., 2016; Kruse-Plass et al., 2017; Perry et al., 2017), our study
moderates the expected influence of the dispersal kernel which came
out relatively low in the hierarchy of the most influential parame-
ters. This result is explained by location of exposed individuals in
the vicinity of GM fields (Fig. S1), for which range of distances (i.e.
closest GM field-exposed individual distances mainly between 4 and
500 m) the considered dispersal kernels have similar behaviours
(Lavigne et al., 2008). It is recognised that dispersal mechanisms
can interact strongly with the landscape structure at large spatial
scales (Keitt et al., 1997). Typically, at short and mid-distances the
amount of received particles depends mostly on the production of
the closest source while at long distances (over 1 km here) it is
mainly influenced by the total production in the landscape (i.e. pollen
background level) and its spatial structure (Klein et al., 2006; Lavi-
gne et al., 2008). Then, we suggest that new model-based landscape
risk assessment could compare several experimentally-tested dis-
persal kernel functions to quantify the risk, and its variability, and
identify critical situations when focusing on populations living about
the toxic sources (short and mid-distances). However, if particular
attention is paid to long distance issues, e.g. to define isolation dis-
tances that would prevent any hazard, it would be crucial to consider
several validated kernels with contrasted long distance behaviours
and, it is likely that the influence of parameters related to the toxic
background level (i.e. the proportion of GM fields) would increase.

In this study we have confirmed the importance of treating explic-
itly space for landscape ERA. However, as the temporal dimension is
known to be central in the specific case of the environmental impact
of GM crops (Holst et al., 2013), focusing only on space is not enough to
provide accurate risk predictions. Then, further quantitative approach
should include the temporal dynamics of pollen emission (Angevin
et al., 2008), pollen loss due to temporally distributed rain events
(Allard and Bourotte, 2015; Walker et al., 2017) and, the phenology of
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exposed individuals (Holst et al., 2013). As shown by numerous stud-
ies spatio-temporal models are central to the design of appropriate
prevention policies (Angevin et al., 2008; Coville, 2015; Gilligan et
al., 2007; Papaïx et al., 2014b; Parisey et al., 2016) and would be use-
ful for supporting the management of GM crops in agroecosystems
(Walker et al., 2017). In addition, it would be relevant to consider
recent empirical works to relax our assumptions regarding the feed-
ing behaviour of exposed individuals and the variability in the spatial
distribution of pollen grains within host-plant leaves and between
host-plants (Hofmann et al., 2016; Lang and Otto, 2015). Furthermore,
as I. io are generally clumped in real conditions it would be insightful
to take into account more realistic spatial distributions of exposed
individuals, as well as variability in the susceptibility of individuals
located on the same host-plant, using existing methods for modelling
spatial point processes (e.g. marked point processes, clustered point
processes) (Illian et al., 2008). While such refinement could improve
risk prediction, our main conclusions may still be valid. In fact, at
the landscape level a group of individuals feeding on the same plant
would be considered to be in the same location in the landscape. Then
if individuals have equal susceptibility, clumps can be obtained by
replicating the point process draw and the output distribution at the
landscape level is similar. Nevertheless, the introduction of more real-
istic experimentally-validated toxicokinetic-toxicodynamics models
(Derendorf and Meibohm, 1999) appears to be the major challenge
in current ERAs and will be crucial for quantifying long-term impacts
with sublethal effects, still seldom considered (Ashauer et al., 2011).
Whereas these advanced ecotoxicological quantitative methods are
common in ERA, e.g. for the impacts of chemical products on aquatic
organisms, their use is still lacking in the case of GM crops for which
only debated empirical dose-mortality relationships are available
(Holst et al., 2013; Perry et al., 2013). Finally, another difficulty for
the quantitative risk assessment of the impacts of GM crops on NTOs
is the lack of empirical data which could enable the accurate quan-
tification of key biological processes. While a strong experimental
effort to improve the estimation of the related parameters (and their
uncertainties) is critical, recent methods developed for the GSA of
stochastic and spatio-temporal models (Marrel et al., 2012, 2016)
would help to improve the estimation of SIs and thereby, gain insight
into the most influential parameters and processes on which we
should concentrate.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.scitotenv.2017.11.329.
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