

Better Training for Safer Food

Initiative

Vittorio Guberti

Principles of Active Surveillance

This presentation is delivered under contract with the Consumers,
Health, Agriculture and Food Executive Agency
(http://ec.europa.eu/chafea). The content of this presentation is the sole
responsibility of Opera, the Istituto Zooprofilattico Sperimentale
Lombardia e Emilia Romagna and the State Food and Veterinary Service
of Latvia and it can in no way be taken to reflect the views of the
Consumers, Health, Agriculture and Food Executive Agency or any other
body of the European Union. The Consumers, Health, Agriculture and
Food Executive Agency or any other body of the European Union will not
be responsible under any circumstances for the contents of
communication items prepared by the contractors

Prague, Czech Republic 25-27 October 2017

Passive (reactive)

Active (proactive)

Stakeholders report to Veterinary Service some "problem"

Individual animals belonging to the "Suspect case definition" are reported and - eventually tested Veterinarians collect animal health data using a defined protocol to perform actions that are scheduled in advance (sampling, tests etc.)

We have a protocol, we go in the farm, collect samples, search for clinical signs etc.

A population or a part of it (risk based) is actively investigated to detect an infection

Passive is better when

Active is better for infections/diseases in which:

An official "suspect case" definition is available and well known among stakeholders

Evident Clinical Symptoms

High lethality rate

High animal owners awareness

High Veterinary Service awareness

Clinical symptoms are not evident, episodic or short lasting

Low/null lethality rate

Low animal owners awareness

Active surveillance is based on sampling/investigating animals

The **number** of samples/investigations taken/carried out will determine the successfulness of the planned activity;

To define **sample size** is a crucial step in any active surveillance;

How to define the **sampling** intensity in active surveillance

N. of sample will depend:

Aim of sampling: detect a case; estimate prevalence

Basic principles: expected prevalence; population size etc.

Field implementation: feasibility; sustainability

Aim of active surveillance

1) To detect a at least one positive animal

2) To estimate disease prevalence(% of positive/examined/population)

The 5%/95% strategy What is for? What does it means?

- It means that that the number of tested samples will detect AT LEAST 1 positive animals if the infection affects at least 5% of the population
- 2. We have 95% probability to detect at least one (1) wild boar positive if 5% of the animals in the population are positive.
- If "only" 3-4% of the animals are infected NO POSITIVE SAMPLE will be detected;

Prevalence of ASF virus in wild boar populations

1 positives out of 3 tested animals = 33,3%

5 positives out of 15 tested animals = 33,3%

60 positives out of 180 tested animals = 33,3%

180 positives out of 540 tested animals = 33,3%

On which of the above prevalences you are more confident?

DATA needed to estimate the correct sample size

Expected prevalence
Population size
Level of confidence
(Precision of the estimate)

Cannon RM and Roe RT. 1982 Livestock disease surveys: A field manual for veterinarians. Bureau of Rural Science, Department of Primary Industry; Australian Government Publishing Service, Canberra, Australia. 33 pp.

Expected prevalence

Expected prevalence: the % of infected animals that you expected in the infected population (you do know yet how many animals are positive...but you have to forecast to design the sampling intensity)

Expected prevalence: literature, local epidemiological situation; aim of surveillance

Expected prevalence in Early detection: the very first case **FIRST CASE** has to be detected; a very low prevalence (**0,1-0,5%**) should be chosen;

The expected prevalence (% of positive animals in the population) is of paramount importance

Population size

Population size is the second very important needed data What does it mean POPULATION?

Population is a group of animals that live in a homogeneous mixing:

Each animal in the population has the same probability of being infected

Each animal has the same probability to be sampled

Each animal will be sampled in the SAME MOMENT

Confidence level

It describes the PRECISION of the obtained estimate

95% Confidence Level means that: if you take the same number o samples in the same population 100 times

95 times you will obtain the same results

Sample size

ONCE you have:

Defined the **AIM** of the active surveillance (case detection or prevalence estimate)

Defined your EXPECTED PREVALENCE

Identified your TARGET POPULATION

Decided the **Confidence level** (and the **error of the estimation**)

You can estimate the sample size from tables

Free software (http://www.winepi.net/uk/index.htm)

How to detect the initial cases

The example of the 5%-95% strategy

- (i) SAMPLE SIZE REQUIRED FOR DETECTING DISEASE
- (ii) CONFIDENCE LIMITS FOR NUMBER OF POSITIVES

		·											
Animals		(i)	-	centag	• •)re	Wa	اما	nce	n	(g\n)		
	IIIIIais	(ii)	per	centage	e s	1 C	, v C		IIC				
	V population											·	
	size (N)	501	401	30%	25%	20%	151	101	5%	21	1,	0.5%	0.11
	10	4	5	6	7	8	10	10	10	10	10	10	10
	20	4	6	7	9	10	12 -	16	19	20	20	20	20
	30	4	6	8	9.	11	14	19	26	30	30	30	30
	, 40	5	6	8	10	12	15	21	31.	40	40	40	40
	50	5	6	8	10	12	16	22	35	48	50	50	50
. · · · · · · · · · · · · · · · · · · ·	60	5	6	8	10	12	16	23	38	55	60	60	60
	70	5	6	8	10	13	17	24	40	62	70	70	70
	. 80	5	6	8	10	13	17	24	42	68	79	80	80
. 2	90	5	6	8	10	13	17	25	43	73	87	90	90
	100	5	6	9	10	13	17	25	45	78	96	100	100
	120	5	6	9	10	13	18,	26	47	86	111	120	120
	140	5	6	9	11	13	18	26	48	92	124	139	140
	160	5	6	9	11	13	18	27	49	97	136	157	160
	180	5	6	9	11	13	18	27	50	101	146	174	180
	200	5	6	9	11	13	18	27	51	105	155	190	200
	250	5	6	9	11	14	18	27	53	112	175	228	250
	300	5	6	9	11	14	18	28	54	117	189	260	300
	350	5	6	9	11	14	18	28	54	121	201	287	350
	400	5	6	9	11	14	19	28	5.5	124	211	311	400
	450	5	6	9	11	14	19	28	55	127	218	331	450
	500	5	6	9	11	14	19	28	56	129	225	349	500
	600	5	6	9	11	14	19	28	56	132	235	379	597
	700	5	6	9	11	14	19	28	57	134	243	402	691
	800	5	6	9	11	14	19	26	57	136	249	421	782
	900	5	6	9	11	14	19	28		137	254	437	868
	1000	-					-20		57	138	258	450	950
_	1200	5	6	9	11	14	19	29	6	140	264	471	1102
	1400	5	6	9	11	14	19	29	58	141	269	487	1236
	1600	5	6	9	11	14	19	29	58	142	272	499	1354
	1800	5	6	9	11	14	19	29	58	143	275	505	1459
_	2000	5	6	9	11	14	19	29		143	277	517	1553
	3000		_ (•	- 1	1.4	10	20	58	145	284	542	1895
	4000	5	6	9	11	14	19	29	Ca.	146	268	556	2108
	5000	5	6	9	11	14	19	29	59	147	290	564	2253
-	6000	5	6	ģ	11	14	19	29	59	147	291	569	2358
	7000	5	6	9	11	14	19	29	59	147	292	573	2437
	8000	5	6	9	11	14	19	29	59	147	293		2498
	9000	5	6	9	11	14	19	29	29	148	254	579	2548
	10000	1 5	6	9	11	14	19	49	59	148	294		2588
	10000	15	6	9	11	14	19	29		149	299		2595

- (i) SAMPLE SIZE REQUIRED FOR DETECTING DISEASE
- (ii) CONFIDENCE LIMITS FOR NUMBER OF POSITIVES

Ar	nimals	(i) (ii)	_	centag		Pre	va	ler	10	e	(d/N)		
	population size (N)	50%	40%	30%	25%	20%	151	10%	51	21	13	0.5%	0.19
	10	4	5	6	7	8	10	10	10	10	10	10	10
	20	4	6	7	9	10	12 ·	16	19	20	20	20	20
	30	4	6	8	9,	11	14	19	26	30	30	30	30
	40	5	6	8	10	12	15	21	31.	40	40	40	40
	50	5	6	8	10	12	16	22	35	48	50	50	50
1.0	60	5	6	8	10	12	16	23	38	55	60	60	60
	1 70	5	6	8	10	13	17	- 24	40	62	70	70	70
	80	5	6	8	10	13	17	24	42	68	79	80	80
	; 90	5	6	8	10	13	17	25	43	73	87	90	90
	100	5	6	9	10	13	17	25	45	78	96	100	100
	120	5	6	9	10	13	18,	26	47	86	111	120	120
	140	5	6	9	11	13	18	26	48	92	124	139	140
	160	5	6	9	11	13 13	18 18	27	49	97	136 146	157 174	160 180
	180	5	6	9		13	18	27	50	101	155	190	200
	200	5	6	9	11 11	13	18	27	51	105 112	175	228	250
	250	5	6	9	11	14	18	27 28	53 54	117	189	260	300
	300	5	6	9	11	14	18		54	121	201	287	350
	350	5	6 6	9	11	14	19	28 28	55	124	211	311	400
		5	-	9	11	14	19	28 28	55	127	218	331	450
	450	5	6	9	11	14	19	28	56	129	225	349	500
	500	5	6	9	11	14			_		235	379	1
	600	5	6	9			19	28	56	132	243	402	597
	700	5	6	9	11	14 14	19	28	57	134			691
	800	5	6	9	11	_	19	26	57	136	249	421 437	782
	900	5	6	9	11	14	19	28	57	137,	254	437	950
	1000	1.5	i	- :			10			1.0			320
	1200	5	6	9	11	14	19	29	57	140	264 269	471	1236
	1400	5	6	9	11	14 14	19	29	58	141	272	487 499	1354
	1600	5	6	9	11 11	14	19 19	29 29	58 58	142 143	275	505	1459
	1800	5	6	9	11	14	19	29	58	143	277	517	1437
	2000	1 3	6	3	11	14	19	29	20	143	201		1895
	3000	1 -	i	•	11	14	19	29	58	146	268	556	2105
,	4000 5000	5	6 6	9	11	14	19	29	58 59	147	290	564	2253
•			_	9	11	14	19	29	59 59	147	291	569	2358
	6000	5	6	-	11	14	19	29	59	147	292	573	2437
	7300	5	6	9		14	19	29	59	147	293	576	2498
	8000	5	6	9	11 11	14	19	29	59	148	254	579	2548
	9000	5	6	9	11	14	19	29	59 59	148	294	581	2390
	10000	5	6	9	11	1.4	19	29	27	140	254	- "	2995
			- 0		4.4		47	- /		4 1 7			

Sampling has to follow precise assumptions:

Set an <u>expected prevalence</u> according to the goal of sampling: EARLY DETECTION (0,1 - 0,2....10%)

Define the population: sampled animals have to belong to the same risk group (same probability to be positive; i.e. same hunting ground, same forest)

All the animals have the <u>same probability to be sampled</u>; (adult animals are shot?)

Sampling should be performed in a <u>shorter time</u> in respect to a single cycle of the infection; (i.e. sampling during hunting season: 3 months)

Estimate a prevalence

How many shot wild boar should I sample to have a good estimate of the prevalence (% of infected wild boar in the population)

Expected prevalence
Population of interest (sampling unit)
Confidence level
Accepted error of the estimate

Expected prevalence = 5%

Population of interest (Sampling unit) =1000

Confidence level = 95%

Accepted error of the estimate = 5%The true prevalence will lie between 0-10% (5%+-5%)

Table 4: Sample Size for Estimation of Disease Prevalence

The table gives the approximate sample size required to estimate a prevalence in a large population with the desired fixed width confidence limits.

				level o	of con	fidence	tion	عملت		
regudord		90%			95%		991			
expected	desired accuracy			desire	ed	ucacy	desired accuracy			
prevalence	10	5	1	10	195	1	10	5	1	
103	24	97	2435	35	138	457	60	239	5971	
4001	43	173	4329	61	· Const	6147	106	425	10616	
30%	57	227	5682	81	323	8067	139	557	13933	
40%	65	260	6494	92	369	9220	159	637	15923	
50%	68	271	6764	96	384	9604	166	663	16587	
60%	65	260	6494	92	369	9220	159	637	15923	
701	57	227	5682	81	323	8067	139	557	13933	
80%	43	173	4329	61	246	6147	106	425	10616	
90%	24	97	2435	35	138	3457	60	239	5971	

The table assumes a knowledge of the approximate result. If in doubt, either use the 0.5 figure, or use the 0.2 figure, but take additional samples if necessary.

When sampling from a finite population of size N, an adjustment to account for this c size n_ above and calculating

$$\frac{1}{n} = \frac{1}{n_{or}} + \frac{1}{N}$$

http://edepot.wur.nl/188646

10% with 5% error means that the obtained prevalence estimation will lie between 10% (+- 5%) = **5%-15%**

Доверительный уровень												
Ожидаемая		96%		99%								
распространенность	Требу	емая то	чность	Требу	ey and O	ность	Требуемая точность					
	10	10 5 1			5	1	10	5	1			
10%	24	97	2435	35	138	3457	60	239	5971			
20%	43	173	4329	61	246	6147	106	425	10616			
30%	57	227	5682	81	323	8067	139	557	13933			
40%	65	260	6494	92	369	9220	159	637	15923			
50%	68	271	6764	96	384	9604	166	663	16587			
60%	65	260	6494	92	369	9220	159	637	15923			
70%	57	227	5682	81	323	8067	139	557	13933			
80%	43	173	4329	61	246	6147	106	425	10616			
90%	24	97	2435	35	138	3457	60	239	5971			

Passive surveillance: suspect case definition dependent

Active surveillance= expected prevalence and population size dependent

In passive surveillance the N. of samples is dependent from the SUSPECT CASE DEFINITION

In Active surveillance the N. of samples is dependent form EXPECTED PREVALENCE and POPULATION SIZE (Sampling Unit)

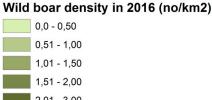
Active surveillance in wildlife

Role played by wildlife in the epidemiology of infection: reservoir, spill over...the wild boar population if epidemiological reservoir of ASF virus;

Epidemiological unit: the wildlife metapopulation that lives in a continuous geographic distribution delimited by natural or artificial barriers

Sampling unit: which is correct sampling unit in order to avoid sampling dilution (low detection probability) or oversampling?

Sample collection: how to collect sample? Hunters, zoologists

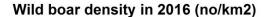

Timing: seasonal hunting, catching, virology vs. serology

Poland: 264.000 wild boars

If we consider that each wild boar living in Poland has the same risk to be ASF infected, we can consider the whole Polish Wild bora population as a UNIQUE SAMPLING UNIT

95% Confidence level; 0,1% is the prevalence that we want detect.

- (i) SAMPLE SIZE REQUIRED POR DETECTING DISEASE
- (ii) CONFIDENCE LIMITS FOR NUMBER OF POSITIVES

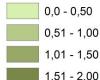

An	imals	(i) (ii)	-	centage centage		Pre	va	ler	10	3 "	(d/n)		
	population size (N)	501	40%	301	25%	20%	151	10%	5%	21	1,	0.5%	0.11
	10	4	5	6	7	8	10	10	10	10	10	10	10
	20	4	6	7	9	10	12 ·	16	19	20	20	20	20
	30	4	6	8	9	11	14	19	26	30	30	30	30
	, 40	5	6	8	10	12	15	21	31 . 35	40 48	40 50	40 50	40 50
	50 60	5	6 6	8	10 10	12 12	16 16	22 23	38	55	60	60	60
	. 60 . 70	5	6	8 8	10	13	16	- 24	40	62	70	70	70
	80	5	6	8	10	13	17	24	42	68	79	80	80
1.	' 90	5	6	8	10	13	17	25	43	73	87	90	90
	100	5	6	9	10	13	17	25	45	78	96	100	100
	120	5	6	ģ	10	13	18	26	47	86	111	120	120
	140	5	6	9	11	13	18	26	48	92	124	139	140
	160	5	6	ģ	11	13	18	27	49	97	136	157	160
	180	5	6	9	11	13	18	27	50	101	146	174	180
	200	5	6	9	11	13	18	27	51	105	155	190	200
	250	5	6	9	11	14	18	27	53	112	175	228	250
	300	5	6	9	11	14	18	28	54	117	189	260	300
p = 2	350	5	6	9	11	14	18	28	54	121	201	287	350
	400	5	6	9	11	14	19	28	5.5	124	211	311	400
	450	5	6	9	11	14	19	28	55	127	218	331	450
	500	5	6	9	11	14	19	28	56	129	225	349	500
	600	5	6	9	11	14	19	28	56	132	235	379	597
	700	5	6	9	11	14	19	28	57	134	243	402	691
1	800	5	6	9	11	14	19	26	57	136	249	421	782
	900	5	6	9	11	14	19	28	57	137,	254	437	868
	1000	5	6	9	11	14	19	29	57	138	258	450	950
	1200	5	6	9	11	14	19	29	57	140	264 269	47 <u>)</u> 487	1102
	1400	5	6	9	11	14 14	19 19	29 29	58 58	141	272	499	1236 1354
	1600 1800	5	6	9	11	14	19	29	58	143	275	509	1459
	2000	5	6	9	11	14	19	29	58	143	277	517	1553
	3000	5	6	9	ii	14	19	29	58	145	284	542	1895
	4000	5	6	9	11	14	19	29	58	146	268	556	2108
	5000	5	6	9	11	14	19	29	59	147	290	564	2253
•	6000	5	6	ģ	11	14	19	29	59	147	291	569	2358
	7300	5	6	ģ	11	14	19	29	59	147	292	573	2437
,	8000	5	6	9	11	14	19	29	59	147	293	576	2498
	9000	5	6	9	11	14	19	29	59	148	254	579	2548
	10000	5	6	9	11	14	19	29	59	148	294	581	700
					11		12	1)	- 22	117	250	->> > ((2595

Poland: 264.000 wild boars distributed in 380 counties

2600 samples are enough

OPPOSITE: if we consider that each county (powiat) has a different risk, we have to CUMULATE samples (NOT SPLIT !!!)

Poland: 264.000 wild boars distributed in 380 counties


2600 samples for each County => 988.000

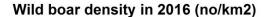
OPPOSITE: if we consider that each county (powiat) has a different risk, we have to CUMULATE samples (NOT SPLIT !!!)

ABSOLUTELY NOT 2600/380 => 7

NEVER, NEVER DIVIDE THE SAMPLING INTENSITY

Wild boar density in 2016 (no/km2)

- (i) SAMPLE SIZE REQUIRED FOR DETECTING DISEASE
- (ii) CONFIDENCE LIMITS FOR NUMBER OF POSITIVES


												. ,		
			(i)	per	centage	0					n	(d/N)		
	∣An	imals		_	-		Pre	Va	ler	16	٦ [- {
	/ (1	IIIIIais	(ii)	per	centage	\$		V		10				
4		population						· · · · · · · · · · · · · · · · · · ·						
		size (N)	501	401	301	25%	20%	151	10%	5%	21	11	0.5%	0.11
		10	4	5	6	7	8	10	10	10	10	10	10	10
		20	4	6	7	9	10	12 ·	16	19	20	20	20	20
		30	4	6	8	9	11	14	19	26	30	30	30	30
		<u>.</u> 40	5	6	8	10	12	15	21	31.	40	40	40	40
		50	5	6	8	10	12	16	22	35	48	50	50	50
		60	5	6	8	10	12	16	23	38	55	60	60	60
		, 70	5	6	8	10	13	17	- 24	40	62	70	70	70
		. 80	5	6	8	10	13	17	24	42	68	79	80	80
		90	5	6	8	10	13	17	25	43	73	87	90	90
		, 100	5	6	9	10	13	17	25	45	78	96	100	100
		120	5	6	9	10	13	18	26	47	86	111	120	120
		140	5	6	9	11	13	18	26	48	92	124	139	140
		160	5	6	9	11	13	18	27	49	97	136	157	160
		180	5	6	9	11	13	18	27	50	101	146	174	180
		200	5	6	9	11	13	18	27	51	105	155	190	200
		250	5	6	9	11	14	18	27	53	112	175	228	250
		300	5	6	9	11	14	18	28	54	117	189	260	300
		350	5	6	9	11	14	18	28	54	121	201	287	350
		400	5	6	9	11	14	19	28	5.5	124	211	311	400
		450	5	6	9	11	14	19	28	55	127	218	331	450
		500	5	6	9	11	14	19	28	56	129	225	349	500
		600	5	6	9	11	14	19	28	56	132	235	379	597
		700	5	6	9	11	14	19	28	57	134	243	402	691
		800	5	6	9	11	14	19	28	57	136	249	421	782
		900	5	6	9	11	14	19	28	57	137,	254	437	868
	j	1000	5	6	9	11	14	19	29	57	138	258	450	950
		1200	5	6	9	11	14	19	29	57	140	264		1102
		1400	5	6	9	11	14	19	29	58	141	269	487	1236
		1600	5	6	9	11	14	19	29	58	142	272		1354
		1800	5	6	9	11	14	19	29	58	143	275	_	1459
		2000	5	6	9	11	14	19	29	58	143	277		1553
		3000	5	6	9	11	14	19	29	58	145	284		1895
		4000	5	6	9	11	14	19	29	58	146	268		2108
	•	5000	5	6	9	11	14	19	29	59	147	290		2253
		6000	5	6	9	11	14	19	29	59	147	291		2358
		7300	5	6	9	11	14	19	29	59	147	292		2437
		8000	5	6	9	11	14	19	29	59	147	293		2498
		9000	5	6	9	11	14	19	29	59	148	254		2548
		10000	5		-	11	14	19	29	59	148	294		2588
			5	6	9	1	14	19	29	59	149	299	598	2595

COLLECTING 7 SAMPLES FOR EACH COUNTY

YOU WILL DETECT ASF ONLY IF PRESENT IN 35% OF THE WILD BOAR OF THE INFECTED COUNTY

THE SAME IS APPLIES WHEN YOU SAMPLE PIGS IN BOTH COMMERCIAL OR BACK YARD SECTORS

1.51 - 2.00

2.01 - 3.00

Active surveillance: critical points

Epidemiological unit: the area of interest for which surveillance is addressed and for which homogeneous actions are foreseen (geographically or risk defined). For the purposes of ASF in wild boar, this is equivalent to the Infected Area, as referred to in Article 16(3)b of Council Directive 2002/60/EC

Sampling unit: the basic unit from which sampling intensity is calculated and samples collected (forest, administrative units etc.). SANCO working document 7138/2013 on ASF surveillance in wild boar recommends areas of 200km² with a wild boar population of 400-1000 head

Sample size: based on the expected prevalence modulated by literature data and feasibility/sustainability.

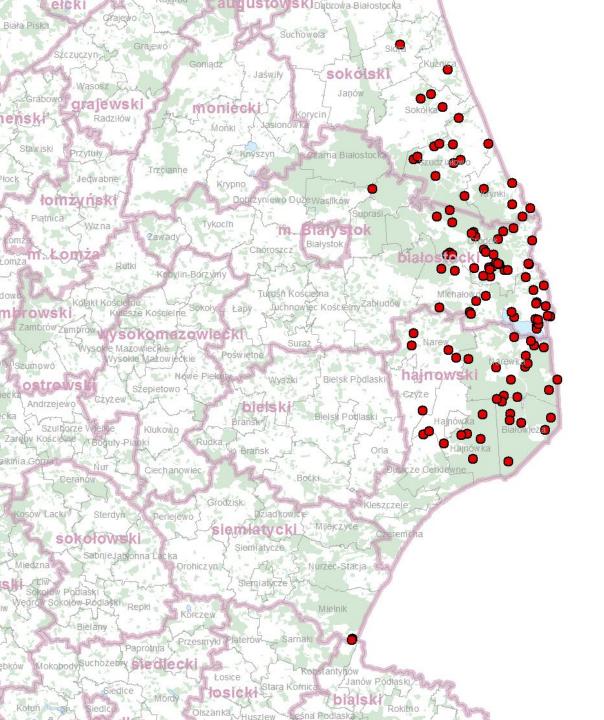
Sampling rate: does the length of time that I need to collect the expected n. of samples affect the surveillance results?

Active surveillance in infected areas

The virus is ALREADY present;

Quantification of the spread of the virus (prevalence/incidence)

Virological and or serological tests


Sample collection: hunters/veterinarians

Risk of further spread of infection: appropriate management of hunting grounds, handling of shot wild boars when transported in private cars; hygienic standard of the dressing areas, storage of carcasses while waiting for the results of the tests; positive carcasses disposal, etc.

ASF PREVALENCE in wild boar

Field example

2014-2016

50 km

ASF prevalence estimation

Latvia data at the onset of the infection

Passive Surveillance=>
Found dead animals = **78%**

Active Surveillance => Shot animals = 1,4%

Which is the true period prevalence?

Is prevalence revealed by active or passive surveillance? What can be compared among different countries?

Active surveillance and early detection:

The virus should detected as soon as possible, hence the expected prevalence has to be set at **0,5-1%**; it means a huge number of samples

Once you have completed your sampling, the area could be free form the virus, but nobody can ensure that the virus will not be introduced the day after you completed sampling

Active surveillance cannot be carried out 365 days/year whereas PASSIVE can be

Take at home message

Surveillance is a strategy shaped by appropriate techniques

Active surveillance: not useful for early detection in free and at risk areas;

Active surveillance: relevant in already infected areas areas

Estimate epidemiological parameters (prevalence, incidence, β, etc.)

Prevalence in hunted animals in infected areas is the sole epidemiological parameter that can be compared among different countries.

Assess the efficacy of passive surveillance

This presentation is delivered under contract with the Consumers, Health, Agriculture and Food Executive Agency (http://ec.europa.eu/chafea). The content of this presentation is the sole responsibility of Opera, the Istituto Zooprofilattico Sperimentale Lombardia e Emilia Romagna and the State Food and Veterinary Service of Latvia and it can in no way be taken to reflect the views of the Consumers, Health, Agriculture and Food Executive Agency or any other body of the European Union. The Consumers, Health, Agriculture and Food Executive Agency or any other body of the European Union will not be responsible under any circumstances for the contents of communication items prepared by the contractors.

OPERA

Viale Parioli 96 - 00197 Roma - Italy Tel +39 06 96042652 Tel/Fax +39.06.8080111 / +39 06 89280678 info@opera-italy.it; www.btsftraining.com; www.opera-italy.it

© Copyright holder: European Commission (2018)

Better Training for Safer Food BTSF

European Commission Consumers, Health, Agriculture and Food Executive Agency DRB A3/042 L-2920 Luxembourg