

DG Health and
Food Safety

Potato Ring Rot and Brown Rot Surveys in the EU

Annual Report 2016/2017

Further information on the Health and Food Safety Directorate-General is available on the internet at: http://ec.europa.eu/dgs/health_food-safety/index_en.htm

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of the following information.

Luxembourg: Publications Office of the European Union, 2017
© European Union, 2017
Reuse is authorised provided the source is acknowledged.
The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39).
For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders.
© All images: UK Crown Copyright - courtesy of the Food and Environment Research Agency (FERA) UK.

Print	ISBN 978-92-79-53337-2	doi:10.2772/72688	ND-BC-14-023-EN-C
PDF	ISBN 978-92-79-43528-7	doi:10.2772/60062	ND-BC-14-023-EN-N

EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR HEALTH AND FOOD SAFETY

Directorate F
Director

Potato ring rot and brown rot surveys in the EU
 Annual Report 2016/2017

EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
2. RING ROT (CLAVIBACTER MICHIGANENSIS SPP. SEPEDONICUS) 2
2.1. Survey density 2016/2017 2
2.2. Detection/outbreaks 4
2.3. Interceptions 6
2.4. Conclusions on ring rot 6
3. BROWN ROT (RALSTONIA SOLANACEARUM) 7
3.1. Survey density 2016/2017 7
3.2. Detection/outbreaks 9
3.3. Interceptions 10
3.4. Conclusions on R. solanacearum 11
4. SITUATION IN SWITZERLAND 12
5. LIST OF TABLES 13

EXECUTIVE SUMMARY

Substantial survey efforts are made in the European Union Member States for both Clavibacter michiganensis spp. sepedonicus (causing potato ring rot) and Ralstonia solanacearum (causing potato brown rot).

Overall, the situation for ring rot has further improved as the total number of findings in the ware potato production was lower than in the previous seasons. Only seven Member States were affected by the disease, the lowest number since 2001. Ring rot incidence has decreased in seed by approximately 15% compared to 2015. In Poland, where most ring rot in the EU occurs, the situation in both seed and ware potato production has improved and the number of findings has significantly dropped compared to the previous growing period. The situation in Romania, however, has further deteriorated in both seed and ware potatoes.

The overall brown rot incidence has slightly decreased in ware potatoes but there were findings in seed after two years without any. Following the first outbreak in 2014 the organism is still present in Poland. Also Portugal, Spain and Hungary need to manage with the continuous findings of the pathogen in ware potatoes. The situation still appears to be positive in Romania with no brown rot detection during the last four growing periods. However, an outbreak in seed potatoes occurred in the Netherlands after four years without any. No substantial changes were observed with regard to the presence of R . solanacearum in surface water or hosts other than potato.

Continuous efforts in Member States affected by ring rot and brown rot in both seed and ware potatoes are necessary for ultimate eradication of both potato diseases.

1. Introduction

Member States (MS) are required by Council Directives 93/85/EEC and 98/57/EC to carry out surveys for Clavibacter michiganensis spp. sepedonicus and Ralstonia solanacearum the bacteria that cause ring rot and brown rot respectively in potatoes. The results of these surveys must be submitted to the Commission annually. The following summary for the 2016/2017 season is based mainly on these reports. All MS have submitted reports which enable a general overview to be produced. A comparison across countries and years is also possible. Notifications of outbreaks submitted in accordance with Article 5(2) of the two Directives and interceptions between MS have been taken into account. With 28 reporting MS and Switzerland (see Section 4), the amount of material is substantial and the focus in this report is on the main aspects only.

The potato production area in 2016 was approximately 1.52 million ha in the 28 EU MS (see Table 1), which is somewhat less than in the preceding year. The seed production area was decreased slightly by 0.12%. Similarly to the last growing periods, about 7% of the total area was seed potatoes. Ware and seed potatoes were produced in all MS, with the exceptions of Malta who produced no seed.

A considerable effort has been made by the MS in carrying out the surveys for both bacteria, based on survey programmes which are prepared and updated every year by individual MS. All production of seed potatoes for marketing is supervised by responsible bodies under the seed potato certification schemes. This is conducted by way of regular field inspections during the vegetation period and around harvesting (including cutting of tuber samples), followed by laboratory analysis of samples. Some MS apply similar controls to part of the farm saved seed production also. The criteria used to select ware potato lots for testing vary amongst countries but mainly include the following: focus on registered or bigger producers, high risk locations or production, source of seed potato used, findings in preceding years. In addition to the programme for laboratory testing, in some MS a significant number of lots were visually inspected and both suspected and randomly chosen tubers were cut to look for symptoms.

Generally, samples of 200 tubers are tested. In some cases like, for example, sampling of high grade seed, the size of sample taken for visual inspection was less than 200 tubers (DE, PL, UK). In many MS, samples taken from potato lots are tested for the presence of both bacteria in parallel. Most MS (BG, HR, CZ, DK, EE, FI, FR, ES, DE, HU, LT, LV, NL, RO, SE, SI, SK), submitted descriptions of their sampling/testing methods confirming that they are using the methods of analysis as prescribed in the annexes to the control directives. In general, modern and sophisticated methods are used (IF, FISH, PCR, realtime PCR) as core screening tests, followed by plating methods and bioassay where needed. In the case of water testing, plating methods are used at first followed by complementary tests, if needed.

2. Ring rot (Clavibacter michiganensis spp. Sepedonicus)

2.1. Survey density 2016/2017

Table 2 shows the total survey activity of testing and visual inspection of various categories of domestic potatoes, while Table 3 shows the amount of testing and inspection carried out on non-domestic potatoes, i.e. potatoes from other MS or from third countries.

Table 6 shows the overall number of tests for latent infection in all MS since 1994. In 2016/2017, the number of samples taken for analysis from their own production in 28 MS was 91,619 of which ca. 70% were seed. In addition to this, 6,677 samples of potatoes from other MS (of which ca. 4,736 samples of Dutch, German, Danish, French and UK seed) or third countries were analysed.

In many MS, numbers of samples analysed were similar to previous years, while in others, a slight or considerable trend to decrease sampling was observed in both seed and ware potatoes. In particular, France and Sweden reduced 20% or more their seed potatoes testing. Belgium, Cyprus, Czech Republic, and Estonia, reduced significantly their ware potatoes testing. Croatia, Portugal and Slovakia decreased their efforts in both seed and ware. By contrast an increase in testing was observed in seed tested in Cyprus, Estonia, Hungary, Latvia and Luxembourg, and of ware potatoes tested in Bulgaria, Spain and Sweden. Lithuania and Poland increased substantially their efforts in both seed and ware.

Table 4 compares the sampling density for latent infection testing applied in MS using a crude calculation of how many ha of potatoes each sample, on average, represents. From a statistical point of view this is not entirely correct, as the total number of samples needed to detect a certain level of infection (or "guarantee" freedom in the production to a predefined degree) in a country would vary, not only with the total hectarage grown, but also with the size of units (lots, farms) involved. Furthermore, a varying proportion of the total number of samples is used for targeted surveys, i.e. investigation of outbreaks and systematic sampling on farms with outbreaks in preceding years. In countries with many outbreaks, this can constitute a substantial proportion of the sampling. This indicator is also not so relevant for countries where system approaches are in use, e.g. with focus on the most critical points in the production chain or risk involved.

Nevertheless, with the data available, this calculation of sampling density can still be useful for an overall comparison of efforts across MS. These are shown in table 4 grouped into three categories: 1) where ring rot has been more or less established for a while or appeared recently in seed without an apparent, "imported" origin; 2) with only a few, sporadic outbreaks; and 3) where ring rot has never occurred. The average for each group is indicated with the overall EU average at the bottom of the Table. There are substantial variations within the groups.

The average sample density of seed potatoes in the first group was improved further to that of the previous growing period. The Netherlands is dominating the picture with regard to the total number of analysed samples of seed potatoes (34.4% of all seed potato samples analysed in the EU are Dutch), with sampling density of 1.64 ha/sample (slightly improved to that of the previous season at $1.86 \mathrm{ha} /$ sample), and then Germany with sample density $1.5 \mathrm{ha} /$ sample, both countries having densities below the average in the first group ($1.38 \mathrm{ha} /$ sample). Sampling more intense than 1 ha/sample was observed for Romania, Poland, Estonia and Hungary. In most MS in this group, the sampling density varied between $1-2.5 \mathrm{ha} / \mathrm{sample}$, whilst Spain, Slovakia and Sweden, had lower densities (2.59, 2.55 and 3.04 respectively). Greece had the lowest density with $4.75 \mathrm{ha} /$ sample.

For ware potatoes, the average sampling density ($37.2 \mathrm{ha} / \mathrm{sample}$) in the first group was significantly improved to that of the previous growing season ($47.6 \mathrm{ha} / \mathrm{sample}$). Four MS, Poland, Lithuania, Bulgaria and Slovakia, are below this density. Poland still dominates the picture as regards the total number of samples tested (some 50\%
of all ware potato samples analysed for ring rot in the EU are Polish), with sampling density $21.4 \mathrm{ha} /$ sample significantly increased compared to the previous season (35 ha/sample). Lithuania increased significantly its efforts in ware potatoes (ca. 12.2 ha/sample) when compared to the previous potato growing period ($20.1 \mathrm{ha} /$ sample). In Greece, Estonia, Slovakia and Czech Republic, the survey efforts were somewhat lower compared to the previous growing season. Latvia, Romania, Bulgaria, and Finland, remained within their usually applied standards of sampling densities close to or better than $40 \mathrm{ha} /$ sample.

As could be reasonably expected, the average sampling density is in general lower in groups two and three than in group one. The average sampling density in seeds in the second group is similar to that of the previous season whilst it has been substantially increased in ware. No significant changes were observed in either seed or ware potato sampling in the third group.

2.2. Detection/outbreaks

Table 6 shows the number of infected lots found in each MS since 1994. In total, seven MS were affected in 2016/2017, which is the lowest number since 2001. None of these MS were recording the pathogen for the first time. An overall 10% decrease was observed in the number of ring rot positives, mainly caused by a substantial decrease of findings in the ware potato production.

No ring rot findings occurred in Estonia, Germany and the Netherlands. Similarly, in Czech Republic and Finland where ring rot has been present for many years, for the first time there were no findings.

Table 5 shows the incidence of ring rot in the MS where it occurred in the 2016 harvest. It is calculated as the number of positive lots as a percentage of samples analysed. The table also indicates the number of outbreaks or positive ring rot cases corresponding to the number of positive lots. Poland still dominates the picture when speaking of ring rot in the EU; some 84% of the contaminated lots were found there. However, a substantial improvement was observed in Poland's ware potato production sector: despite the increased number of ware potato samples by 46% during 2016/2017 the number of positive lots decreased by 14% when compared to the previous growing period. This resulted in a substantial decrease of the overall disease incidence in ware potatoes in Poland (5.4\% in 2016/2017 vs. 9.1% in 2015/2016). A similar decrease was also observed in the number of contaminated seed potato lots when compared to the previous season: 8 in total, giving an incidence level of 0.08% (vs. 0.22% in $2015 / 2016$ and 0.1% in 2014/2015).

The overall picture regarding ring rot incidences in seed potatoes for the rest of the EU was the same with that of the previous growing period (0.02% in 2015/2016). However, the ring rot incidence in ware potatoes was slightly increased to 0.93% compared to 0.66% in the previous season.

Eleven positive seed lots were found in Romania with ring rot incidence doubled compared to the previous growing period (0.8% vs. 0.4% vs. in 2015/2016). A significant increase was also observed in positive ware lots resulting in increased ring rot incidence (6.73% vs. 4.48% in 2015/2016 and 6.3% in 2014/2015).

If Romania is excluded from the overall figures together with Poland, there were only 45 lots found contaminated in the 2016/2017 season (of which, one in seeds) and the overall incidence would be 0.35% in ware potatoes (indicating a slight increase compared to the last growing season 0.31%) and 0.002% in seed.

In the Baltic countries, there were no findings of ring rot in seed and, as mentioned above, there was no ring rot in Estonia. However, the situation in Lithuania is challenging mainly due to an increase in the number of findings in ware potatoes giving ring rot incidence level 2.5% (1.9% last season), whilst in Latvia only slight improvement has been observed with 1% incidence (1.2% last season). In some places of production using farm saved seed for many years, there are recurrent ring rot outbreaks.

In the Nordic countries, ring rot was not found in Sweden (for the fifth consecutive year) whilst the disease has been eradicated in Denmark (not found since 2003). As mentioned above, for the first time no ring rot findings occurred in Finland.

After having sporadic outbreaks in both seed and ware potatoes until 2003, Austria found no ring rot for the thirteenth year in a row while keeping its level of sampling stable for both seed and ware potatoes. After the first findings in ware potatoes in 2014 and 2015, the situation in Hungary has improved with no findings in seed and ware potato production this year. Following the ring rot outbreaks in 2012, there have been no new outbreaks in Belgium and the United Kingdom for the fourth year in a row.

There was no ring rot contamination this year in Germany and no findings in seed for the fourth year in a row. There were no findings in seed or ware potatoes in the Netherlands and France in both seed and ware potatoes. Spain had one finding of ring rot in seed and one in ware. One finding occurred in ware potatoes in Slovakia; no findings occurred in seed.

The level of ring rot contamination increased further in Bulgaria as six cases of positive ware potatoes were reported (3 cases in 2015/2016). One positive case of ring rot was also identified in seed. The origin of the infection might be related to the use of non-certified seed and shared machinery. Italy and Greece, including Crete where ring rot outbreaks had occurred previously, did not find the bacterium for the eighth consecutive year; however, in both countries sampling density continues to be low in both seed and ware potatoes.

Some of the affected MS submitted more detailed information on applying the routine control measures taken as a consequence of findings. They also provided descriptions of measures taken in response to findings or interceptions in order to find the possible source and spread of the disease. Investigations carried out in MS with outbreaks (e.g. Bulgaria, Lithuania, Latvia) allowed either to find or to suspect a reason for infection (as in most cases no definite source of infection could be found). In MS with a high number of findings (e.g. Poland, Romania), finding a possible source of infection was not possible in most cases. This was principally because of mixed seeds of uncertain origins or use of farm saved seeds and lack of preventive hygiene measures in sharing machinery and storage facilities.

2.3. Interceptions

As indicated in Table 3, six interceptions of ring rot were reported during the last season, one in seed potatoes from Czech Republic reported by Poland (still under investigation at the time of reporting) and five in ware potatoes. The ware potatoes were from Poland (three notified by Romania with significant delay and one by United Kingdom) and Turkey (one reported by Bulgaria). The visual inspections carried out on marketed potatoes originating from other MS and third countries decreased by 5%. For the same period, laboratory testing increased by 8%. In total, 6,677 samples from potato consignments were examined in the laboratory whilst 7,313 were visually inspected.

2.4. Conclusions on ring rot

Survey efforts are still substantial although somewhat uneven across the EU, even when taking into account the phytosanitary situation in various MS. The differences in surveillance efforts between MS were similar to the previous growing season, in particular regarding ware potatoes in all groups. The overall sampling density increased to $51.9 \mathrm{ha} / \mathrm{sample}$ ($60.5 \mathrm{ha} / \mathrm{sample}$ in the previous season). In the case of seed potatoes, most MS took one sample either from one lot or from 25 tonnes, which resulted in an overall average sampling density of $1.72 \mathrm{ha} /$ sample, similar to that observed in the previous season ($1.76 \mathrm{ha} / \mathrm{sample}$).

As has been observed over previous years, the situation seems to be under control in countries with a large potato production, including seeds, such as France, United Kingdom, Germany and the Netherlands (all with no findings). Figure 1 shows the overall number of tests in seed potato and samples positive to ring rot in the EU since 2007. Three MS, Poland, Romania and Spain found ring rot in seed in 2016/2017.

Figure 1. Overall number of tests in seed potato and samples positive to ring rot in the EU since 2007
When consistently applied, the control and precautionary measures prescribed in the control Directive, will eventually bring the disease under control and either eradicate it or reduce the amount of contamination to very low levels. The pathogen has been possibly eradicated from Greece as the current picture continues to be very promising.

Most contamination in the EU is found in Poland, where sampling efforts have significantly increased. Major progress was observed particularly in ware potatoes where ring rot incidence was significantly reduced and Poland has now dropped to the second highest position. However, the overall ring rot incidence is still high for both seed and ware potatoes and additional efforts are necessary. Romania continued its efforts and in seed it achieved a level of sampling and testing similar to that of the previous growing period. However, now it has the highest ring rot incidence within the EU. Figure 2 shows the overall number of tests in ware potato and samples positive to ring rot in the EU since 2007. In most cases, no definite source of the contamination could be identified.

Figure 2. Overall number of tests in ware potato and samples positive to ring rot in the EU since 2007
Taking the EU as a whole, the ring rot incidence dropped in both seed and ware and the situation has improved since the previous growing period. Ring rot was found only in seven MS, the lowest number of affected MS since 2001. In addition, the total number of findings was lower and the overall ring rot incidence decreased further in 2016 (3.17% vs. 4% observed in 2015).

3. Brown rot (Ralstonia solanacearum)

3.1. Survey density 2016/2017

Table 7 shows the total survey activity of testing and visual inspection on various categories of domestic potatoes. Table 8 shows the survey activity in water and hosts other than potato and Table 9 shows the amount of testing and inspection carried out on non-domestic potatoes, i.e. potatoes from other MS or from third countries.

In potatoes

Table 12 shows the overall number of tests for latent infection in all MS since 1995. In 2016/2017, the numbers of samples taken for analysis from their own production in all MS amounted to 98,341 approximately 64% of which were seed. In addition to this, 6,898 samples of potatoes from other MS (mainly Dutch seed, but also German, Danish and British) or third countries were analysed.

In most MS, the numbers of samples analysed were similar to previous years. In the MS previously affected by brown rot, a significant increase in sampling was observed for seed potatoes in Czech Republic and Hungary and for ware potatoes in Bulgaria, Spain and Sweden. The Netherlands and Poland increased substantially sampling in both seed and ware potatoes. By contrast, France and Spain decreased somewhat their sampling in seed, whilst Belgium, Greece and Slovakia decreased further their sampling for ware. Portugal decreased further its sampling in ware. The Netherlands continue to apply a testing density of one sample of seed potatoes per lot. In case of "high risk profile" (e.g. outbreaks or clonal and/or contact links with contaminated material) and violations (e.g. prohibited use of surface water for irrigation) one sample per 25 tonnes was taken. For ware potatoes the "high risk profile" sampling rate is one sample per 150 tonnes.

The sampling density applied in MS for latent infection testing is calculated as for ring rot and shown in Table 10 where MS are grouped into three categories: 1) where brown rot has been, more or less, established for a while in potatoes, tomatoes or in wild hosts/water; 2) with only few, sporadic outbreaks; and 3) where brown rot has never occurred. The average for each group is indicated with the overall EU average at the bottom of the Table. For seed potatoes, the sampling density in group one is higher compared to the second and third groups. However, substantial variations between MS are observed within all groups. A similar situation is also observed in sampling density of ware potatoes.

Poland applied similar sampling density for seed as that of the previous growing period ($0.6 \mathrm{ha} /$ sample vs. $0.7 \mathrm{ha} /$ sample in 2015/2016) and increased the density for ware from $20 \mathrm{ha} / \mathrm{sample}$ to 13.8 ha /sample. Bulgaria continued to apply slightly increased sampling densities compared to those of the previous growing period, 1.5 ha/sample for seed and $26.6 \mathrm{ha} / \mathrm{sample}$ for ware potatoes. The average sampling density of seed potatoes in this group ($1.6 \mathrm{ha} / \mathrm{sample}$) was similar to that of the previous season (1.8 ha / sample). Some of the MS in the first group have higher densities, from 0.5-0.9 ha/sample, whilst Greece, Italy and United Kingdom have significantly lower densities. Hungary, Poland, Portugal and Romania have the highest densities of seed potato testing, followed by Germany and the Netherlands.

In ware potato production, the average sampling density of the MS in group 1 (35.6 ha/sample) increased compared to the previous season ($41.8 \mathrm{ha} / \mathrm{sample}$). Poland continued its efforts and still has the highest sampling rates followed by Bulgaria, Slovakia, and the Netherlands. Some improvement in sampling densities of ware potatoes compared to the previous season could be noticed in Spain.

Sampling rates, similar to those of the previous growing season, were applied for seed and ware potatoes in the second and third groups. In the second group the average sampling densities were 2 ha and 113.8 ha / sample for seed and ware potatoes respectively. Sweden continued improving its sampling density in ware potatoes. Ireland after a ninth season without findings has stabilised its surveying efforts. Survey efforts in the third group are also diverse; the average sampling densities were 3.3 ha and 41.3 ha / sample for seed and ware potatoes respectively. Estonia, Cyprus and Lithuania were considerably above the EU average for seed potatoes and Malta and Lithuania for ware.

In water and other hosts

Table 8 shows the survey activity in water and in hosts other than potato. The relevance of such sampling depends on the use of surface water for irrigation or spraying, the risk of flooding, the presence of wild hosts such as Solanum dulcamara, the growing of other hosts (e.g. tomato), and previous findings of the bacterium in the area. It is thus difficult from the information supplied to gauge and compare the efforts done in sampling water and other hosts. The geographical distribution of the samples is also essential if all relevant watercourses/production areas are to be covered. In table 8, "general survey" samples cannot be separated from samples taken to investigate outbreaks or delimit an infested watercourse.

The majority of MS conduct the surveys every year, focusing on cultivated and wild hosts. In some MS very little or no survey activity outside potatoes has taken place. An explanation for this is that in some of these countries, irrigation with surface water is uncommon or non-existent. In other MS, testing of water is an essential element in the surveying activity for the bacterium. Thus, Belgium, Czech Republic, France, Germany, Hungary, the Netherlands, and the United Kingdom continue to analyse a high number of water samples, as does Poland where the first findings of R. solanacearum in a potato crop occurred in 2014. Most other MS also regularly check their water bodies.

3.2. Detection/outbreaks

Potatoes

Table 12 shows the number of infected lots found in each Member State since 1995. Five MS found brown rot during 2016/2017 season, the second lowest number of MS since 2000. In the Netherlands the bacterium was found in seed potato lots, whilst Hungary found the contamination in both seed and ware. In Poland, the bacterium occurred for a third season with the same incidence 0.01% in ware potatoes as in 2015/2016. In Portugal, and Spain the pathogen occurred again in ware potato production.

Table 11 shows the incidence of brown rot in these MS. As for ring rot, it is calculated as the number of positive lots as a percentage of samples analysed. The overall incidence in the EU is in general very low, and much lower than for ring rot, with findings in both seed and ware potatoes resulting in ca. 0.055% total EU disease incidence (0.078% in the last growing period).

In general, when compared to the last growing season the situation remained stable for most MS affected except Hungary and the Netherlands where the situation has worsened with significantly increased numbers of findings. In the Netherlands, the specific measures imposing restrictions on harvesting potatoes from flooded fields and the prohibition of irrigation of seed potato crops with surface water are still in place. However, the contamination appears to have been caused after flooding of a shallow seed potato production field by a nearby contaminated waterway. The competent authority raised awareness amongst seed potato producers to avoid growing seed potatoes too close to surface water.

After a single finding in 2008, Austria found no outbreaks for the eighth year in a row. Following the ware potato findings of 2009 the bacterium was not found in the United Kingdom or in Sweden for the seventh consecutive year. In Ireland,
intensive sampling of domestically produced potatoes and of all marketed seed potatoes prior to planting did not reveal infection, thus the 2007 findings in this country remain the only ones and the bacterium has been eradicated.

After its first outbreak in 2012 and seven more findings in the last growing period the bacterium was not found during 2016/2017 in Czech Republic, whilst in Slovakia all potato production remains free from brown rot since 2010. In Romania, after three successive growing seasons with recurrent outbreaks (2010-2012), no findings have occurred during the last four growing periods. No brown rot findings occurred during the last growing season in Bulgaria, France, Germany and Greece.

Water and other hosts

Table 8 shows the number of positive samples from water and other hosts apart from potato. As in the previous two surveillance periods the bacterium was found in seven MS either in water or in wild host plants (or both). Of the samples taken from surface water in previously affected regions in Italy and Greece, none was found positive. In Belgium, no positive water samples were detected in the border of and outside the protected areas. In addition, of the 36 samples of S. dulcamara examined this year none was found to be positive.

In Germany, as in the previous years, the bacterium was found in surface water showing permanent contamination. Infection was also detected in one sample of S. dulcamara. However, the bacterium was not detected in samples of material (waste water, abraded potato peel, potato fluid and sand) discarded from potato processing plants.

In the Netherlands, a total of 111 samples tested positive out of 1,300 samples taken from surface water and in one sample of S. dulcamara. R. solanacearum was also detected in 79 out of 576 water samples tested in Hungary. Two more positive surface water samples were detected in Portugal; five samples taken from other hosts were negative. In Spain, 46 samples of surface water were found positive; there was also one case of infection in tomato crops. The bacterium was also detected this year in samples taken from waste and surface water in Czech Republic. In United Kingdom the bacterium was detected in six samples taken from surface water.

There were no findings of the bacterium in surface or waste water discarded from potato packers or processing factories in Ireland or in Poland. However, there were six positives in other hosts in Poland. The continued survey of waste and/or surface water in Austria, Romania, Slovakia and Slovenia, MS where brown rot findings occurred in the past, did not reveal any positive cases.

The bacterium was also found in S. dulcamara tested in Czech Republic (three positives). Detailed information has also been provided for testing carried out by the MS in other hosts, including S. nigrum, S. melongena, Cucumis sp., Citrulus lanatus, Cucurbita sp., Bidens sp., Urtica dioica, Pelargonium and Capsicum sp. with no findings.

3.3. Interceptions

Two interceptions of potato consignments with brown rot were notified one from Turkey and one from Egypt.

3.4. Conclusions on R. solanacearum

Survey efforts are still uneven across the EU, even when taking into account the phytosanitary situation in the various MS. Figure 3 shows the overall number of tests in seed potato and samples positive to brown rot in the EU since 2007.

Figure 3. Overall number of tests in seed potato and samples positive to brown rot in the EU since 2007
In the case of seed potatoes, most MS take one sample either from one lot or from 25 tonnes, which resulted in an average sampling density of $1.7 \mathrm{ha} /$ sample in 2016/2017, which is similar to that in the previous season. In the case of ware potatoes, the average sampling density increased somewhat to $40.6 \mathrm{ha} /$ sample (46.5 in the last season). Figure 4 shows the overall number of tests in ware potato and samples positive to brown rot in the EU since 2007.

Figure 4. Overall number of tests in ware potato and samples positive to brown rot in the EU since 2007
In Hungary, the situation has deteriorated compared to the last growing season. After four years in a row without findings, the same applies for the Netherlands with brown rot findings in seed potato production. Although in some countries the pathogen is found in surface waters, limited irrigation or strict measures and control
of contaminated watercourses result in reduced risk for contamination of crops. In Spain, there was one outbreak in tomatoes.

Except for Hungary and the Netherlands, it seems that the situation has not worsened in any MS. Findings during the previous growing seasons in Bulgaria, France, Germany and Greece were not repeated this season. Poland, Spain and Portugal still need to manage with continuous findings of the pathogen. It is positive that the pathogen did not appear again in Romania after it was last found in 2012 as well as in Slovakia and Slovenia with last findings respectively in 2010 and 2011.

The overall incidence in potatoes in the EU (0.055%) has further decreased compared to the last two growing seasons $(0.078 \%$ for 2015/2016 and 0.076% for 2014/2015). However, due to the repetition of findings in the seed potato production sector in MS which have been long-time affected by the disease, the positive trend observed cannot be considered as permanent yet.

4. Situation in Switzerland

Switzerland submitted survey results for seed potatoes (no data regarding ware potatoes production was received). Some 1,528 ha of seeds, pre-basic, basic and certified, were cultivated in 2016. In total, 153 samples were taken; that gives the sampling density rate some 10 ha per sample (the EU average is less than 2 ha/sample). Samples are tested for the two bacteria in parallel; no positives were found. Both crops and tubers are routinely inspected during the vegetation period and after harvest. There are no data whether or not tests of surface water or of host plants other than potatoes are carried out for the presence of R. solanacearum.

In April 2017 Switzerland, following a notification received by the Dutch competent authorities, reported an outbreak of R. solanacearum race 1 at two sites with several varieties of Rosa cultivated for cut flower production. Eradication measures have been taken and follow-up investigations are in place.

Switzerland also checks consignments of imported potatoes, both seeds and ware. All imported seed lots are checked. During the last season, 143 samples of seeds (from Austria, Belgium, France, Netherlands and Poland) were visually inspected and then laboratory tested for both bacteria. No sample was positive. In addition, 53 samples of ware potatoes from Spain were visually inspected. Again, no infection was found.

5. LIST OF TABLES

Table 1: Potato production area in the EU in 2016
Table 2: Surveys for Clavibacter michiganensis ssp. sepedonicus on the domestic production, harvest 2016
Table 3: Surveys for Clavibacter michiganensis ssp. sepedonicus on potato "imports", 2016/2017 season
Table 4: Density of sampling for laboratory testing for Clavibacter michiganensis ssp. sepedonicus on the domestic potato production, harvest 2016
Table 5: Incidence of ring rot in Member States where it occurred in the 2016 harvest
Table 6: Surveys for Clavibacter michiganensis ssp. sepedonicus since 1994 on the domestic potato production
Table 7: Surveys for Ralstonia solanacearum on the domestic 2016 potato crop
Table 8: Surveys for Ralstonia solanacearum in water and non-potato hosts in 2016
Table 9: Surveys for Ralstonia solanacearum on potato "imports", 2016/2017 season
Table 10: Density of sampling for laboratory testing for Ralstonia solanacearum on the domestic potato production, harvest 2016
Table 11: Incidence of brown rot in Member States where it occurred in the 2016 harvest
Table 12: Surveys for Ralstonia solanacearum since 1995 on the domestic potato production

Table 1: Potato production area in the EU in 2016 (in ha)
(source: Member States)

Member State	Seed	Ware	Total
Austria	1.685,51	19.325,24	21.010,75
Belgium	2.240,66	85.790,00	88.030,66
Bulgaria	182,75	11.889,05	12.071,80
Croatia	20,00	9.500,00	9.520,00
Cyprus	94,51	5.000,00	5.094,51
Czech Republic	2.919,00	20.496,00	23.415,00
Denmark	4.589,00	39.709,00	44.298,00
Estonia	235,27	5.600,00	5.835,27
Finland	1.050,00	21.000,00	22.050,00
France	19.096,00	155.595,00	174.691,00
Germany	15.633,00	224.325,00	239.958,00
Greece	190,10	21.315,62	21.505,72
Hungary	211,00	18.000,00	18.211,00
Ireland	253,00	8.721,00	8.974,00
Italy	198,00	39.936,00	40.134,00
Latvia	413,01	24.386,88	24.799,89
Lithuania	157,50	13.964,70	14.122,20
Luxembourg	356,00	201,00	557,00
Malta	0,00	701,00	701,00
Netherlands	36.434,00	117.226,00	153.660,00
Poland	5.979,30	287.613,60	293.592,90
Portugal	11,45	24.622,00	24.633,45
Romania	738,24	50.359,00	51.097,24
Slovakia	441,10	5.583,68	6.024,78
Slovenia	31,72	3.147,00	3.178,72
Spain	2.094,09	46.486,06	48.580,15
Sweden	910,70	24.210,00	25.120,70
United Kingdom	14.839,00	127.978,60	142.817,60
Total	111.003,91	1.412.681,43	1.523.685,34

EUROPEAN COMMISSION Directorate F-Health and food
Unit F3.1 - Plants and organics
Surveys for Clavibacter michiganensis ssp. sepedonicus on the domestic production, harvest 2016

Member State	Type of potatoes	Hectarage	Laboratory testing			Visual checks		Comments
			Number of samples	Density (ha/sample)	Positive lots	Number of samples	Symptomatic samples	
Austria	Seed (pre-basic)	6,65	9	0,74	0	0	0	
	Seed (basic)	494,84	342	1,45	0	304	0	
	Seed (certified)	1.184,02	851	1,39	0	668	0	
	Seed (TOTAL)	1.685,51	1.202	1,40	0	972	0	
	Ware	10.950,29			0	11	0	
	Industrial	8.374,95	75	257,67	0	3	0	
	Other (TOTAL)	19.325,24	75	257,67	0	14	0	
Belgium	Breeding material		5	0,00	0	0	0	
	Seed (pre-basic)	59,68	52	1,15	0	47	0	All lots inspected \& sampled during grading
	Seed (basic)	1.926,66	891	2,16	0	534	0	All parcels inspected during growth
	Seed (certified)	254,32	134	1,90	0	128	0	Sampling: pre-basic 10 samples/lot, basic S,SE 1sample/ha
	Seed (TOTAL)	2.240,66	1.082	2,07	0	709	0	(max 4samples/lot), Basic \& Cerifified 1sample/lot
	Farm saved seed	0,00	318		0	166	0	1-2 samples/lot
	Ware/industrial potatoes	85.790,00	318	134,89	0	318	0	1 sample/lot
	Targeted surveys (ware)		0		0	0	0	
	Other (TOTAL)	85.790,00	636	134,89	0	484	0	
Bulgaria	Seed (basic)	3,30	9	0,37	0	9	0	
	Seed (certified)	179,45	116	1,55	0	116	0	
	Seed (TOTAL)	182,75	125	1,46	0	125	0	
	Ware	11.889,05	441	26,96	7	441	0	Pernik - 4 outbreaks - 67,8 ha. Sliven - 1 outbreak $-0,75$ ha. Samokov - 1 outbreak - 0,55 ha.
	Other		6		0	6	0	Additional 6 tuber samples for tracing related lots.
	Other (TOTAL)	11.889,05	447	26,60	7	447	0	
Croatia	Seed (certified)	20,00	22	0,91	0	17	0	
	Seed (TOTAL)	20,00	22	0,91	0	17	0	
	Farm saved seed			\#DIV/0!	0		0	
	Ware incl. young pots	9.500,00	107	88,79	0	39	0	
	Industrial			\#DIV/0!	0		0	
	Other (TOTAL)	9.500,00	107	88,79	0	39	0	
Cyprus	Seed (certified)	94,51	104	0,91	0	104	0	Two field inspections and one inspection during harvest;
	Seed (TOTAL)	94,51	104	0,91	0	104	0	All seed potato fields are inspected.
	Ware	5.000,00	119	42,02	0	119	0	Fields are selected randomly from all potato producing areas.
	Other (TOTAL)	5.000,00	119	42,02	0	119	0	
Czech Republic	Breeding material		60	0,00	0	14	0	
	Seed (pre-basic)	0,00	0	\#DIV/0!	0	0	0	
	Seed (basic)	335,00	378	0,89	0	0	0	
	Seed (certified)	2.584,00	2.043	1,26	0	25	0	
	Seed (TOTAL)	2.919,00	2.481	1,18	0	39	0	
	Ware \& Farm saved seed	15.390,00	271	56,79	0	427	0	Incl. volunteer potatoes
	Industrial	5.106,00	166	30,76		42	0	
	Samples of washing/waste water		30	0,00	0	0	0	
	Other (TOTAL)	20.496,00	437	46,90	0	469	0	
Denmark	Seed (pre-basic)	4.589,00	581	0,00	0	0	0	
	Seed (TOTAL)	4.589,00	581	7,90	0	0	0	
	Ware	39.709,00	358	0,00	0	0	0	
	Other (TOTAL)	39.709,00	358	110,92	0	0	0	

EUROPEAN COMMISSION
Directorate F - Health and food audits and analysis
Unit F3.1 - Plants and organics

Member State	Type of potatoes	Hectarage	Laboratory testing			Visual checks		Comments
			Number of samples	Density (ha/sample)	Positive lots	Number of samples	Symptomatic samples	
Estonia	Seed (pre-basic)	3,04	7	0,43	0	0	0	
	Seed (basic)	6,38	11	0,58	0	0	0	
	Seed (certified)	225,85	270	0,84	0	0	0	
	Seed (TOTAL)	235,27	288	0,82	0	0	0	
	Ware	5.600,00	145	38,62	0	0	0	
	Other (TOTAL)	5.600,00	145	38,62	0	0	0	
Finland	Seed (pre-basic)	225,00	98	69,00	0	278	0	
	Seed (basic)	438,00	163	12,00	0	237	0	
	Seed (certified)	368,00	198	139,00	0	199	0	
	Other seed	19,00	11	5,00	0	0	0	
	Seed (TOTAL)	1.050,00	470	2,23	0	714	0	
	Ware	15.500,00	347	473,00	0	0	0	
	Industrial	5.500,00	86	68,00	0	0	0	
	Other (TOTAL)	21.000,00	433	48,50	0	0	0	
France	Seed (pre-basic)	3.521,00	3.760	0,94	0	3.334	0	
	Seed (basic)	11.781,00	5.136	2,29	0	4.407	0	
	Seed (certified)	3.794,00	1.293	2,93	0	1.256	0	
	Seed (TOTAL)	19.096,00	10.189	1,87	0	8.997	0	
	Ware	133.220,00	943	141,27	0	0	0	
	Industrial	22.375,00	943	141,27	0	0	0	
	Other (TOTAL)	155.595,00	943	165,00	0	0	0	
Germany	Breeding material		907	0,00	0	808	0	
	Seed (pre-basic)	1.010,00	1.617	0,62	0	1.617	0	
	Seed (basic)	5.361,00	3.023	1,77	0	2.865	0	
	Seed (certified)	9.262,00	4.512	2,05	0	4.753	0	
	Seed (in trade)		347	0,00	0	346	0	
	Seed (TOTAL)	15.633,00	10.406	1,50	0	10.389	0	
	Farm saved seed (own production)	0,00	298	0,00	0	298	0	
	Ware/industrial	224.309,00	2.226	100,77	0	46.294	0	
	Other	16,00	14	1,14	0	14	0	
	Other (TOTAL)	224.325,00	2.538	88,39	0	46.606	0	
Greece	Seed (certified)	190,10	40	4,75	0	40	0	
	Seed (TOTAL)	190,10	40	4,75	0	40	0	
	Ware \& Industrial outside Crete	19.335,62	239	80,90	0	242	0	
	Ware, Crete	1.980,00	182	10,88	0	0	0	
	Soil		28			0	0	Examined for PPs and PCs issuing (plants for planting)
	Other (TOTAL)	21.315,62	421	50,63	0	242	0	
Hungary	Seed (pre-basic)	23,00	39	0,59	0	0	0	
	Seed (basic)	70,00	66	1,06	0	0	0	
	Seed (certified)	104,00	95	1,09	0	0	0	
	Seed (breeding stock)	14,00	25	0,56	0	0	0	
	Seed (TOTAL)	211,00	225	0,94	0	0	0	
	Ware	18.000,00	215	83,72	0	218	0	No further outbreaks following those in 2015
	Other (TOTAL)	18.000,00	215	83,72	0	218	0	
Ireland	Seed (pre-basic)	0,00		\#DIV/0!	0	0	0	
	Seed (basic)	253,00	175	1,45	0	0	0	
	Seed (TOTAL)	253,00	175	1,45	0	0	0	
	Ware	$8.721,00$	310	28,13	0	0	0	
	Other (TOTAL)	8.721,00	310	28,13	0	0	0	

EUROPEAN COMMISSION
Directorate F - Health and food audits and analysis
Table 2
08-12-17

UROPEAN COMMISSION
Directorate F - Health and food audits and analysis
Unit F3.1 - Plants and organics
Table 2
08-12-17

	$\bigcirc \bigcirc 0$	00	000000	00000	000000	00000	000000	0000000

TABLE 3: Surveys for Clavibacter michiganensis ssp. sepedonicus on potato "imports", 2016/2017 season

Member State	Commodity	Number of Samples	Positives	Number of visual checks	Positives	Remarks
Austria	Seed potatoes	94	0	0	0	Mainly from NL and DE
	Other potatoes	16	0	0	0	Mainly from EG
Belgium	Seed potatoes	587	0	289	0	Most from NL, FR and LU
	Other potatoes	231	0	231	0	Mainly from DE, FR, NL, and IL
Bulgaria	Seed potatoes	77	0	100	0	Mainly from NL and DE
	Other potatoes	53	1	454	0	1 positive from TR, 2 intercepted lots
Croatia	Seed potatoes	85	0	99	0	Mainly from NL and DE
	Other potatoes	32	0	104	0	Mainly from BA, ES, DE, and NL
Cyprus	Seed potatoes	275	0	275	0	Mainly from NL
	Other potatoes	0	0	0	0	
Czech Republic	Seed potatoes	27	0	22	0	Mainly from NL and DE
	Other potatoes	54	0	38	0	Mainly from FR, PL and EG
Denmark	Seed potatoes	0	0	0	0	
	Other potatoes	0	0	0	0	
Estonia	Seed potatoes	6	0	0	0	From DE, DK, and NL
	Other potatoes	9	0	0	0	From MA, EG, NL, ES, SE, LT and LV
Finland	Seed potatoes	136	0	0	0	From DE, DK, NL, and SE
	Other potatoes	0	0	0	0	
France	Seed potatoes	163	0	163	0	Mainly from NL
	Other potatoes	1	0	2	0	From PL and IL
Germany	Seed potatoes	263	0	134	0	Majority from NL and PL
	Other potatoes	25	0	467	0	Mainly from EG
Greece	Seed potatoes	296	0	296	0	Most from NL
	Other potatoes	302	0	302	0	From EG and TR
Hungary	Seed potatoes	54	0	0	0	Most from NL, FR and DE
	Other potatoes	0	0	0	0	
Ireland	Seed potatoes	106	0	0	0	Mainly from UK, and DE
	Other potatoes	48	0	0	0	From IL
Italy	Seed potatoes	259	0	459	0	Mainly from NL
	Other potatoes	130	0	2.286	0	From TN
Latvia	Seed potatoes	78	0	0	0	Mainly from DE and NL
	Other potatoes	23	0	0	0	Mainly from ES, IT, MA and EG
Lithuania	Seed potatoes	19	0	6	0	From PL, DE, LV and NL
	Other potatoes	3	0	0	0	From MA and EG
Luxembourg	Seed potatoes	35	0	0	0	From CH, D, FR and NL
	Other potatoes	1	0	0	0	From FR
Malta	Seed potatoes	16	0	16	0	Mainly from NL
	Other potatoes	3	0	3	0	From NL
Netherlands	Seed potatoes	246	0	0	0	From BE, DK, DE, FR, DE and UK
	Other potatoes	216	0	0	0	Mainly from DE and BE
Poland	Seed potatoes	183	1	16	0	from DE and NL; 1 positive accomp. by CZ plant passport
	Other potatoes	139	0	322	0	Mainly from CY and EG
Portugal	Seed potatoes	65	0	65	0	Mainly from NL and UK
	Other potatoes	28	0	28	0	From FR, NL and ES
Romania	Seed potatoes	180	0	200	0	Most from NL and DE
	Other potatoes	269	3	271	0	Most from EG, 3 positives from PL from non-compliant consignments
Slovakia	Seed potatoes	26	0	26	0	Mainly from DE and NL
	Other potatoes	123	0	123	0	Mainly from CZ, FR, and DE
Slovenia	Seed potatoes	12	0	2	0	Mainly from NL and DE
	Other potatoes	8	0	6	0	Mainly from FR and IT
Spain	Seed potatoes	415	0	419	0	Most from NL and UK
	Other potatoes	103	0	33	0	Most from NL, UK and FR
Sweden	Seed potatoes	,	0	0	0	From DE and UK
	Other potatoes	0	0	19	0	From IL - only visual inspections.
United Kingdom	Seed potatoes	1.029	0	27	0	Most from NL, FR and DE
	Other potatoes	124	1	7	0	1 positive from PL
EU	Seed potatoes	4.736	1	2.614	0	
	Other potatoes	1.941	5	4.696	0	

TABLE 4: Density of sampling for laboratory testing for Clavibacter michiganensis ssp. sepedonicus on the domestic potato production, harvest 2016

Member State	Seed potatoes			Ware potatoes		
	Area (ha)	No. of samples	Sampling density (ha per sample)	Area (ha)	No. of samples	Sampling density (ha per sample)
Poland	5.979	9.633	0,62	287.614	13.435	21,41
Latvia	413	269	1,54	24.387	567	43,01
Lithuania	158	153	1,03	13.965	1.145	12,20
Romania	738	1.396	0,53	50.359	1.248	40,35
Germany	15.633	10.406	1,50	224.325	2.538	88,39
Netherlands	36.434	22.177	1,64	117.226	2.047	57,27
Bulgaria	183	125	1,46	11.889	447	26,60
Spain	2.094	810	2,59	46.486	494	94,10
Slovakia	441	173	2,55	5.584	176	31,73
Estonia	235	288	0,82	5.600	145	38,62
Finland	1.050	470	2,23	21.000	433	48,50
Sweden	911	300	3,04	24.210	208	116,39
Hungary	211	225	0,94	18.000	215	83,72
Greece	190	40	4,75	21.316	421	50,63
Czech Republic	2.919	2.481	1,18	20.496	437	46,90
TOTAL - GROUP 1	67.589	48.946	1,38	892.456	23.956	37,25
Denmark	4.589	581	7,90	39.709	358	110,92
United Kingdom	14.839	1.861	7,97	127.979	260	492,23
France	19.096	10.189	1,87	155.595	943	165,00
Belgium	2.241	1.082	2,07	85.790	636	134,89
Austria	1.686	1.202	1,40	19.325	75	257,67
Cyprus	95	104	0,91	5.000	119	42,02
Italy	198	30	6,60	39.936	203	196,73
TOTAL - GROUP 2	42.743	15.049	2,84	473.334	2.594	182,47
Croatia	20	22	0,91	9.500	107	88,79
Malta	0	0		701	33	21,24
Slovenia	32	20	1,59	3.147	60	52,45
Ireland	253	175	1,45	8.721	310	28,13
Luxembourg	356	189	1,88	201	3	
Portugal	11	13	0,88	24.622	142	173,39
TOTAL - GROUP 3	672	419	1,60	46.892	655	71,59
TOTAL EU	111.004	64.414	1,72	1.412.681	27.205	51,93

TABLE 5: Incidence of ring rot in Member States where it occurred in the 2016 harvest

Member State	Type	$\frac{\text { Total no. of }}{\text { samples }}$	No. of positive lots	$\frac{\text { No. of }}{\text { Rr cases }}$	$\frac{\text { Incidence }}{\text { seed }}$	Incidence ware
Bulgaria	seed	125	0	0	0,000\%	
	ware	447	7	6		1,566\%
Latvia	seed	269	0	0	0,000\%	
	ware	567	6	6		1,058\%
Lithuania	seed	153	0	0	0,000\%	
	ware	1.145	29	25		2,533\%
Poland	seed	9.633	8	0	0,083\%	
	ware	13.435	724	724		5,389\%
Romania	seed	1.396	11	8	0,788\%	
	ware	1.248	84	77		6,731\%
Slovakia	seed	173	0	0	0,000\%	
	ware	176	1	1		0,568\%
Spain	seed	810	1	1	0,123\%	
	ware	494	1	1		0,202\%
TOTAL EU-ring rot	seed	47.796	20	9	0,042\%	
	ware	22.833	852	840		3,731\%
TOTAL EU28	seed	64.414	20	9	0,031\%	
	ware	27.205	852	840		3,132\%
TOTAL EU27 (-PL)	seed	54.781	12	9	0,022\%	
	ware	13.770	128	116		0,930\%
TOTAL EU26 (-PL\&RO)	seed	53.385	1	1	0,002\%	
	ware	12.522	44	39		0,351\%

Aindings must be used with caution.
Surveys for Ralstonia solanacearum on the domestic 2016 potato crop Surveys for Ralstonia solanacearum on the domestic 2016 potato crop

Member State	Type of potatoes	Hectarage	Laboratory testing			Visual inspections				Comments
			no. of samples	$\begin{gathered} \text { density } \\ \text { (ha/sample) } \end{gathered}$	$\begin{gathered} \text { no. positive } \\ \hline \text { lots } \\ \hline \end{gathered}$	$\begin{aligned} & \text { tuber } \\ & \text { samples } \end{aligned}$	$\begin{gathered} \frac{\text { no. }}{\text { positive }} \\ \hline \end{gathered}$	crop inspections	no. positive	
Estonia	Seed (pre-basic)	3,04	7	0,43	0	0	0	0	0	
	Seed (basic)	6,38	11	0,58	0	0	0	0	0	
	Seed (certified)	225,85	270	0,84	0	0	0	0	0	
	Seed (TOTAL)	235,27	288	0,82	0	0	0	0	0	
	W are potatoes	5.600,00	145	38,62	0	0	0	0	0	
	Other (TOTAL)	5.600,00	145	38,62	0	0	0	0	0	
Finland	Seed (pre-basic)	225,00	98	2,30	0	278	0	0	0	
	Seed (basic)	438,00	163	2,69	0	237	0	0	0	
	Seed (certified)	368,00	198	1,86	0	199	0	0	0	
	Other seed	19,00	11	1,73	0	0	0	0	0	
	Seed (TOTAL)	1.050,00	470	2,23	0	714	0	0	0	
	W are	15.500,00	347	44,67	0	0	0	0	0	
	Industrial	5.500,00	86	35,23	0	0	0	0	0	
	Other (TOTAL)	21.000,00	433	48,50	0	0	0	0	0	
France	Seed (pre-basic)	3.521,00	3.760	0,94	0	3.334	0		0	
	Seed (basic)	11.781,00	5.136	2,29	0	4.407	0	29.000	0	
	Seed (certified)	3.794,00	1.293	2,93	0	1.256	0		0	
	Seed (TOTAL)	19.096,00	10.189	1,87	0	8.997	0	29.000	0	
	W are potatoes	133.220,00			0	0	0	0	0	
	Industrial	22.375,00	943	41,27	0	0	0	0	0	
	Other (TOTAL)	155.595,00	943	165,00	0	0	0	0	0	
Germany	Breeding material	0,00	907	0,00	0	808	0	297	0	
	Seed (pre-basic)	1.010,00	1.617	0,62	0	1.617	0	4.287	0	
	Seed (basic)	5.361,00	3.023	1,77	0	2.865	0	4.848	0	
	Seed (certified)	9.262,00	4.512	2,05	0	4.753	0	5.927	0	
	Seed (samples from trade -DE)	0,00	347	0,00	0	346	0	85	0	
	Seed (TOTAL)	15.633,00	10.406	1,50	0	10.389	0	15.444	0	
	Farm saved seed (own prod.)	0,00	298		0	298	0	0	0	
	Ware/industrial potatoes	224.309,00	2.226	0,00		46.294				
	Other	16,00	14		0	14	0	0	0	
	Other (TOTAL)	224.325,00	2.538	88,39	0	46.606	0	0	0	
Greece	Seed (certified)	190,10	40	4,75	0	40	0	0	0	
	Seed (TOTAL)	190,10	40	4,75	0	40	0	0	0	2 visual inspections of fields during growing season
	W are outside Crete	19.335,62	227	85,18	0	230	0	0	0	62 lots of 227 used as farm saved seed.
	W are, Crete	1.980,00	182	10,88	0	182	0	0	0	
	Industrial		12	0,00	0	12	0	0	0	Visual inspections of 182 fields.
	Other (TOTAL)	21.315,62	421	50,63	0	424	0	0	0	
Hungary	Seed (pre-basic)	23,00	39	0,59	0	0	0	11	0	
	Seed (basic)	70,00	66	1,06	0	0	0	56	0	
	Seed (certified)	104,00	95	1,09	1	0	0	45	0	
	Seed (breeding stock)	14,00	25	0,56	4	0	0	38	0	
	Seed (TOTAL)	211,00	225	0,94	5	0	0	150	0	
	Ware	18.000,00	215	83,72	7	218	0	324	0	
	Other (TOTAL)	18.000,00	215	83,72	7	218	0	324	0	
Ireland	Seed (pre-basic)	0,00		\#DIV/0!	0	0	0	0	0	
	Seed (basic)	253,00	175	1,45	0	800	0	3	0	
	Seed (TOTAL)	253,00	175,00	1,45	0	800	0	3	0	
	W are	8.721,00	310	28,13	0	250	0	0	0	
	Other (TOTAL)	8.721,00	310	28,13	0	250	0	0	0	

Member State	Type of potatoes	Hectarage	Laboratory testing			Visual inspections				Comments
			no. of samples	$\underset{\text { (ha/sample) }}{\text { density }}$	$\begin{gathered} \text { no. positive } \\ \hline \text { lots } \\ \hline \end{gathered}$	$\begin{aligned} & \text { tuber } \\ & \text { samples } \end{aligned}$	$\begin{aligned} & \text { nositive } \\ & \hline \end{aligned}$	crop inspections	no. positive	
Italy	Seed (certified)	198,00	30	6,60	0	39	0	251	0	
	Seed (TOTAL)	198,00	30	6,60	0	39	0	251	0	
	W are	37.059,00	194		0	383	0	705	0	
	Industrial	2.877,00	31		0	81	0	126	0	
	Other (TOTAL)	39.936,00	225	177,49	0	464	0	831	0	
Latvia	Seed (pre-basic)	20,55	30	0,69	0	0	0	0	0	
	Seed (basic)	26,75	22	1,22	0	0	0	0	0	
	Seed (certified)	365,71	206	1,78	0	0	0	0	0	
	Seed (other)	0,11	60	0,00	0	0	0	0	0	Breeders material
	Seed (TOTAL)	413,12	318	1,30	0	0	0	0	0	
	W are potatoes	$24.386,88$	439		0	0	0	0	0	
	Industrial	24.386,88	70	47,91	0	0	0	0	0	
	Other		58							Outbreaks of CMS of previous years
	Other (TOTAL)	24.386,88	567	43,01	0	0	0	0	0	
Lithuania	Seed (pre-basic)	0,10	8	0,01	0	0	0	0	0	
	Seed (basic)	0,00	0	\#DIV/0!	0	0	0	0	0	
	Seed (certified)	157,40	145	1,09	0	0	0	3	0	
	Seed (TOTAL)	157,50	153	1,03	0	0	0	3	0	
	W are potatoes	13.964,70	1.145	12,20	0	34	0	29	0	
	Other (TOTAL)	13.964,70	1.145	12,20	0	34	0	29	0	
Luxembourg	Seed (pre-basic)	21,00	49	0,43	0	0	0	111	0	
	Seed (basic)	204,00	106	1,92	0	0	0	324	0	
	Seed (certified)	131,00	34	3,85	0	0	0	165	0	
	Seed (TOTAL)	356,00	189	1,88	0	0	0	600	0	
	Ware	201,00	3	67,00	0	0	0	3	0	
	Other (TOTAL)	201,00	3	67,00	0	0	0	0	0	
Malta	Seed (certified)	0,00	0	\#DIV/0!		0	0	0	0	
	Seed (TOTAL)	0,00	0	\#DIV/0!	0	0	0	0	0	
	Ware potatoes	701,00	31	22,61	0	31	0	29	0	29 samples from open field potatoes, 1 from local ware potatoes and 1 ware potatoes from the EU
	Other (TOTAL)	701,00	31	22,61	0	31	0	29	0	
Netherlands	Breeding material (+in-vitro)		316		0	0	0	0	0	
	Seed (pre-basic)	9.566,00	7.023	1,67	0	7.023	0	0	0	
	Seed (basic)	19.881,00	10.343		2	10.343	0	0	0	Findings related to one single source. Grower in 2015 whereby part of a field suffered from flooding in a summer.
	Seed (certified)	6.987,00	3.821	1,83	0	3.821	0	0	0	
	Seed other (targeted survey)		1.115		6	1.115				Positive lots with direct clonal links with the 2 findings in basic seed potatoes
	Seed (export TC)		674							
	Seed (TOTAL)	36.434,00	23.292	1,56	8	0	0	0	0	
	FSS+material for starch	1.030,00	497		0	497	0	0	0	
	Ware	73.032,00	678	58,79	0	678	0	0	0	
	Industrial for starch	43.164,00	819		0	819	0	0	0	
	Other (TOTAL)	117.226,00	1.994	58,79	0	1.994	0	0	0	
Poland	Variety trials	102,70	744	0,14	0	73	0	44	0	Positives originate from farms already in quarantine since 2015
	Seed (pre-basic)	121,90	234	0,52	0	0	0	28	0	
	Seed (basic)	1.780,10	2.984	0,60	0	27	0	194	0	
	Seed (certified)	3.974,60	5.682	0,70	0	1.017	0	1.602	0	
	Seed (TOTAL)	5.979,30	9.644	0,62	0	1.117	0	1.868	0	
	Ware	234.950,30	8.248	28,49	1	4.896	0	1.779	0	
	Farm saved seed	4.283,10	1.295	3,31	0	241	0	213	0	
	Industrial	48.380,20	11.271	4,29	1	669	0	614	0	
	Other (TOTAL)	287.613,60	20.814	13,82	2	5.806	0	2.606	0	

Member State	Type of potatoes	Hectarage	Laboratory testing			Visual inspections				Comments
			no. of samples	$\begin{gathered} \text { density } \\ \text { (ha/sample) } \end{gathered}$	$\begin{aligned} & \text { no. positive } \\ & \text { lots } \end{aligned}$	$\begin{aligned} & \text { tuber } \\ & \text { samples } \end{aligned}$	$\frac{\text { no. }}{\text { positive }}$	inspections	no. positive	
Portugal	Seed (certified)	11,45	13	0,88	0	13	0	52	0	
	Seed (TOTAL)	11,45	13	0,88	0	13	0	52	0	
	Ware	24.622,00	142	173,39	1	142	0	244	0	1 positive in central region. Origin not determined. Additional surveillance ongoing.
	Industrial	0,00	0	\#DIV/0!	0	0	0	0	0	
	Other (TOTAL)	24.622,00	142	173,39	1	142	0	244	0	
Romania	Seed (pre-basic)	0,45	1	0,45	0	1	0	1	0	
	Seed (basic)	45,88	92	0,50	0	92	0	17	0	
	Seed (certified)	691,91	1.303	0,53	0	1.303	0	246	0	
	Seed (TOTAL)	738,24	1.396	0,53	0	1.396	0	264	0	
	W are	49.428,68	1.243	39,77	0	1.347	0	1.347	0	
	Industrial	930,32	5	186,06	0	5	0	5	0	
	Other (TOTAL)	50.359,00	1.248	40,35	0	1.352	0	1.352	0	
Slovakia	Breeding material			\#VALUE!	0		0		0	
	Seed (pre-basic)	0,00	0	\#DIV/0!	0	0	0	0	0	
	Seed (basic)	98,94	64	1,55	0	64	0	106	0	
	Seed (certified)	342,16	109	3,14	0	109	0	198	0	
	Seed (TOTAL)	441,10	173	2,55	0	173	0	304	0	
	Ware potatoes	5.583,68	176	31,73	0	370	0	206	0	
	Other (TOTAL)	5.583,68	176	31,73	0	370	0	206	0	
Slovenia	Seed (pre-basic)	1,93	8	0,24	0	29	0	58	0	
	Seed (basic)	21,90	6	3,65	0	32	0	64	0	
	Seed (certified)	7,89	6	1,32	0	11	0	22	0	
	Seed (TOTAL)	31,72	20	1,59	0	72	0	144	0	
	W are potatoes	3.147,00	60	52,45	0	60	0	0	0	
	Other		0	\#DIV/0!	0	0	0	0	0	
	Other (TOTAL)	3.147,00	60	52,45	0	60	0	0	0	
Spain	Seed (pre-basic)	78,85	15	5,26	0	12	0	70	0	
	Seed (basic)	740,34	143	5,18	0	131	0	819	0	
	Seed (certified)	1.274,90	649	1,96	0	464	0	1.553	0	
	Seed (TOTAL)	2.094,09	807	2,59	0	607	0	2.442	0	
	Ware(inc. farm cons. \& potato waste)	46.486,06	496	93,72	2	692	0	800	0	Both positives in the province of Jaen; one of the fields irigated
	Industrial	0,00	0	93,72	0		0		0	with contaminated water
	Other (TOTAL)	46.486,06	496	93,72	2	692	0	800	0	
Sweden	Seed (pre-basic)	587,70	176	3,34	0	160	0	0	0	
	Seed (basic)	301,20	115	2,62	0	160	0	0	0	
	Seed (certified)	21,80	9	2,42	0	160	0	0	0	
	Seed (TOTAL)	910,70	300	3,04	0	480	0	0	0	
	W are	17.335,00		39	0	2.100	0	0	0	
	Industrial	6.875,00			0	0	0	0	0	
	Other (TOTAL)	24.210,00	208	116,39	0	2.100	0	0	0	
United Kingdom	Seed (pre-basic)	111,00	185	0,60	0	0	0	0	0	
	Seed (basic)	14.472,00	1.622	8,92	0	0	0	0	0	
	Seed (certified)	256,00	54		0	0	0	0	0	
	Seed (TOTAL)	14.839,00	1.861	7,97	0	0	0	0	0	
	Farm saved seed	600,00	0		0	0	0	0	0	
	W are potatoes	127.378,60	260	\#Divo!	0	0	0	0	0	
	Other (TOTAL)	127.978,60	260	492,23	0	0	0	0	0	

TABLE 8: Surveys for Ralstonia solanacearum in water and non-potato hosts in 2016

Member State	Water sampling				Tomatoes or other hosts						Comments
	Waste water/soil (processing)		Surface water		Other hosts		Tomatoes				
	$\underset{\underline{\text { samples }}}{\underline{\text { no. of }}}$	no. positive	$\begin{aligned} & \underline{\text { no. of }} \\ & \text { samples } \end{aligned}$	$\underset{\underline{\text { positive }}}{\underline{\text { no. }}}$	$\frac{\text { no. }}{\text { samples }}$	$\underset{\text { positive }}{\frac{\text { no. }}{}}$	$\underset{\text { inspections }}{\underline{\text { no. }}}$	$\frac{\text { no. plants }}{\text { inspected }}$	no. lab. tests	$\underset{\underline{\text { positive }}}{\frac{\text { no. }}{\text { nen }}}$	
Austria	0	0	9	0	6	0	32	80.725	14	0	Other hosts - different host plants including tomatoes intended for production. Water samples from rivers
Belgium	48	0	425	0	36	0	0	0	0	0	Other hosts: Solanum dulcamara in rivers ouside P.A.
Bulgaria	4	0	27	0	9	0	44	29.207	1	0	Other hosts: Solanum nigrum
Croatia	0	0	12	0	0	0	37	0	28	0	
Cyprus	0	0	0	0	0	0	0	0	0	0	
Czech Republic	30	2	144	18	184	3	3	0	1	0	Other hosts: S. dulcamara (3 positive), Urtica dioica, Bidens spp., Mentha spp
Denmark	0	0	0	0	0	0	0	0	0	0	Irrigation has no significance in Denmark
Estonia	0	0	0	0	0	0	0	0	0	0	Irrigation has no signiticance in Estonia
Finland	0	0	0	0	0	0	0		0	0	Irrigation has no signiticance in Finland
France	0	0	269	0	0	0	0	0	0	0	
Germany	79	0	69	9	208	1	1	100	0	0	Hosts include: S.dulcamara(24, 1 positive), Pelargonium(56), Tomato plants (41), Others (87)
Greece	0	0	6	0	68	0	51	1.392.707	169	0	6 surface water (river) samples from Preveza
Hungary	0	0	576	79	65	0	34	12	2	0	52 Rosa, 13 S. dulcamara, all negative
Ireland	23	0	0	0	0	0	0	0	0	0	
Italy	0	0	61	0	93	0	215	$3.061 .862+$ ND	179	0	Capsicum annum, Sol. melongena, Lycopersicum esculentum for processing, Cucumis sp., Citrullus lanatus, Cucubita
Latvia	0	0	26	0	26	0	0	0	0	0	Other hosts: S. dulcamara (19) and S. nigrum (7)
Lithuania	0	0	30	0	3	0	0	0	0	0	Other hosts: S. dulcamara from the riverside
Luxembourg	0	0	0	0	0	0	0	0	0	0	
Malta	0	0	4	0	28	0	0	0	22	0	Tomatoes: 15 samples from open fied tomato crops and 13 samples collected from greenhouses.
Netherlands	0	0	1.300	111	3	1	0	0	100	0	Other hosts: S. dulcamara, 1 positive
Poland	3.418	0	1.010	0	283	6	394	49.036.346	1	0	
Portugal	0	0	10	2	5	0	0	0	0	0	Samples of Rosa taken in green houses subject to eradication measures; 2 positive samples in irigation water.
Romania	0	0	1	0	1	0	110	2012500	1	0	Other hosts: Solanum dulcamara
Slovakia	0	0	37	0	5	0	10	13	1	0	Other hosts: Solanum dulcamara
Slovenia	0	0	14	0	0	0	189	2.240 .000	0	0	
Spain	0	0	124	46	16	0	157	21.090.904	1.185	1	Positive in a greehouse in the province of Almeria
Sweden	0	0	0	0	0	0	0	0	0	0	Irrigation has no significance in Sweden
United Kingdom	15	0	541	6	8	0	0	0	0	0	Other hosts: Solanum dulcamara; 6 Rs found at 2 locations along Sixteen Foot drain
TOTAL EU	3.617	2	4.695	271	1.047	11	1.277		1.704	1	

TABLE 9: Surveys for Ralstonia solanacearum on potato "imports", 2016/2017 season

Member State	Commodity	Number of samples	Positives	Number of visual checks	Positives	Remarks
Austria	Seed potatoes Other potatoes	$\begin{aligned} & 94 \\ & 16 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	Mainly from NL and DE Mainly from EG
Belgium	Seed potatoes Other potatoes	$\begin{aligned} & 587 \\ & 231 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 289 \\ & 231 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Most from NL, FR and LU Mainly from DE, FR, NL, and IL
Bulgaria	Seed potatoes Other potatoes	$\begin{aligned} & 77 \\ & 53 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 100 \\ & 454 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL and DE Mainly from TR: one positive lot
Croatia	Seed potatoes Other potatoes	$\begin{aligned} & 85 \\ & 46 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 99 \\ 280 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL and DE
Cyprus	Seed potatoes Other potatoes	$\begin{array}{r} 275 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 275 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL and DE
Czech Republic	Seed potatoes Other potatoes	$\begin{array}{r} 130 \\ 54 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 22 \\ & 38 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from DE and NL Mainly from DE, FR, PL and EG
Denmark	Seed potatoes Other potatoes	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	
Estonia	Seed potatoes Other potatoes	$\begin{aligned} & 6 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from DE Mainly from LV
Finland	Seed potatoes Other potatoes	$\begin{array}{r} 136 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	From DE, NL, DK, and SE
France	Seed potatoes Other potatoes	$\begin{array}{r} 163 \\ 1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 163 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL From PL and IL
Germany	Seed potatoes Other potatoes	$\begin{array}{r} \hline 263 \\ 92 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 134 \\ & 811 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL Mainly from EG
Greece	Seed potatoes Other potatoes	$\begin{aligned} & 296 \\ & 302 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 296 \\ & 302 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Most from NL From EG
Hungary	Seed potatoes Other potatoes	$\begin{array}{r} 54 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Most from NL and DE Mainly from PL
Ireland	Seed potatoes Other potatoes	$\begin{array}{r} \hline 106 \\ 48 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from UK and DE From IL and PL
Italy	Seed potatoes Other potatoes	$\begin{aligned} & 254 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 450 \\ 2.286 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL From EG, IL and TN
Latvia	Seed potatoes Other potatoes	$\begin{aligned} & 78 \\ & 23 \end{aligned}$	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from DE and NL From various MS
Lithuania	Seed potatoes Other potatoes	$\begin{array}{r} 19 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	6	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	From various MS From MA and EG
Luxembourg	Seed potatoes Other potatoes	$\begin{array}{r} 35 \\ 1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	From CH, D, FR and NL From FR
Malta	Seed potatoes Other potatoes	$\begin{array}{r} 16 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 16 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL From NL
Netherlands	Seed potatoes Other potatoes	$\begin{aligned} & 246 \\ & 216 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from BE, DK, DE, FR and UK Mainly from BE, DE, FR, and PL
Poland	Seed potatoes Other potatoes	$\begin{aligned} & 183 \\ & 139 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{r} 16 \\ 322 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from DE and NL From various MS; includes EG (1 positive)
Portugal	Seed potatoes Other potatoes	$\begin{aligned} & 65 \\ & 28 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 65 \\ & 28 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL and UK From FR and ES
Romania	Seed potatoes Other potatoes	$\begin{aligned} & 180 \\ & 269 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 200 \\ & 271 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Most from NL and DE Most from EG and RS
Slovakia	Seed potatoes Other potatoes	$\begin{array}{r} 26 \\ 123 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 26 \\ 123 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL and DE Mainly from CZ, FR, DE and NL
Slovenia	Seed potatoes Other potatoes	$\begin{aligned} & 12 \\ & 54 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2 \\ 126 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mainly from NL Mainly from EG
Spain	Seed potatoes Other potatoes	$\begin{aligned} & 415 \\ & 103 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 419 \\ 33 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Most from NL and UK Most from NL , UK and FR
Sweden	Seed potatoes Other potatoes	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	
United Kingdom	Seed potatoes Other potatoes	$\begin{array}{r} \hline 1.029 \\ 124 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 27 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Most from NL and FR Mainly from FR, ES, EG, and IL
EU	Seed potatoes Other potatoes	$\begin{aligned} & 4.830 \\ & 2.068 \end{aligned}$	0 2	2.605 5.337	0	

TABLE 10: Density of sampling for laboratory testing for Ralstonia solanacearum on the domestic potato production, harvest 2016

Member State	Seed potatoes			Ware potatoes		
	Area (ha)	No. of samples	Sampling density (ha per sample)	Area (ha)	No. of samples	Sampling density (ha per sample)
Bulgaria	183	125	1,5	11.889	447	26,6
Netherlands	36.434	23.292	1,6	117.226	1.994	58,8
Germany	15.633	10.406	1,5	224.325	2.538	88,4
Spain	2.094	807	2,6	46.486	496	93,7
Hungary	211	225	0,9	18.000	215	83,7
Poland	5.979	9.644	0,6	287.614	20.814	13,8
Portugal	11	13	0,9	24.622	142	173,4
Romania	738	1.396	0,5	50.359	1.248	40,4
Slovakia	441	173	2,5	5.584	176	31,7
Greece	190	40	4,8	21.316	421	50,6
Italy	198	30	6,6	39.936	225	177,5
Belgium	2.241	1.082	2,1	85.790	848	101,2
United Kingdom	14.839	1.861	8,0	127.979	260	492,2
TOTAL - GROUP 1	79.193	49.094	1,6	1.061.125	29.824	35,6
Austria	1.686	1.202	1,4	19.325	75	257,7
Czech Republic	2.919	469	6,2	20.496	439	46,7
France	19.096	10.189	1,9	155.595	943	165,0
Ireland	253	175	1,4	8.721	310	28,1
Slovenia	32	20	1,6	3.147	60	52,5
Sweden	911	300	3,0	24.210	208	116,4
TOTAL - GROUP 2	24.896	12.355	2,0	231.494	2.035	113,8
Croatia	20	22	0,9	9.500	107	88,8
Cyprus	95	104	0,9	5.000	119	42,0
Denmark	4.589	581	7,9	39.709	358	110,9
Estonia	235	288	0,8	5.600	145	38,6
Finland	1.050	470	2,2	21.000	433	48,5
Latvia	413	318	1,3	24.387	567	43,0
Lithuania	158	153	1,0	13.965	1.145	12,2
Luxembourg	356	189	1,9	201	3	
Malta	0	0		701	31	22,6
TOTAL - GROUP 3	6.915	2.125	3,3	120.063	2.908	41,3
EU	111.004	63.574	1,7	1.412.681	34.767	40,6

TABLE 11: Incidence of brown rot in Member States where it occurred in the 2016 harvest

Member State		Total no. of samples	No. of positive lots	No. of Br cases	Incidence seed	Incidence ware
Hungary	seed	225	5	2	$2,222 \%$	
ware	215	7	2		$3,256 \%$	
	seed	23.292	8	1	$0,034 \%$	
	ware	1.994	0	0		$0,000 \%$
Portugal	seed	9.644	0	0	$0,000 \%$	
	ware	20.814	2	2		$0,010 \%$
Spain	seed	13	0	0	$0,000 \%$	
	ware	142	1	1		$0,704 \%$
TOTAL EU-brown rot	reed	807	0	0	$0,000 \%$	
	ware	496	2	2		$0,403 \%$
wOTAL EU28	33.981	13	3	$0,038 \%$		
	weed	23.661	12	7		$0,051 \%$

\begin{tabular}{|c|}
\hline Member State \& \& \& 1995 \& 1996 \& 1997 \& 1998 \& 1999 \& 2000 \& 2001 \& 2002 \& 2003 \& 2004 \& 2005 \& 2006 \& 2007 \& 2008 \& 2009 \& 2010 \& 2011 \& 2012 \& 2013 \& 2014 \& 2015 \& 2016 \\
\hline Austria \& Number of Samples \& \& \[
\begin{aligned}
\& 54 \\
\& 73
\end{aligned}
\] \& 108
83 \& 120
87 \& 117
65 \& 112
78 \& 298
81 \& 653
94 \& 589
92 \& 662
91 \& 632
87 \& 625
88 \& 594
96 \& 578
91 \& \[
\begin{array}{r}
533 \\
87 \\
1 \\
\hline
\end{array}
\] \& 603
99 \& 602
104 \& 594
105 \& 1.224
75 \& 1.216
73 \& 1.169
68 \& 1.133
71 \& 1.202
75 \\
\hline Belgium \& \[
\begin{gathered}
\hline \hline \text { Number of } \\
\text { Samples } \\
\text { - positive lots }
\end{gathered}
\] \& \& \[
\begin{array}{r}
\hline 1.251 \\
89
\end{array}
\] \& \[
\begin{aligned}
\& \hline \hline 854 \\
\& 193
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 342 \\
\& 101
\end{aligned}
\] \& \[
\begin{array}{r}
\hline 500 \\
73
\end{array}
\] \& \[
\begin{array}{r}
\hline 700 \\
499 \\
1 \\
8 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 1.082 \\
408
\end{array}
\] \& \[
\begin{aligned}
\& \hline 701 \\
\& 411
\end{aligned}
\] \& \[
\begin{array}{r}
\hline 1.043 \\
649 \\
\\
11 \\
\hline \hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline \hline 3.731 \\
\& 1.123
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 4.948 \\
\& 1.629
\end{aligned}
\] \& \[
\begin{array}{r}
\hline 3.346 \\
1.527 \\
\\
\mathbf{1} \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 2.535 \\
663
\end{array}
\] \& \[
\begin{aligned}
\& \hline \hline 1.040 \\
\& 1.285
\end{aligned}
\] \& \[
\begin{array}{r}
925 \\
1.375 \\
\mathbf{1} \\
\hline \hline
\end{array}
\] \& 1.168
1.446 \& \[
\begin{aligned}
\& \hline 1.073 \\
\& 1.406
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1.038 \\
\& 1.268
\end{aligned}
\] \& 959
1.281 \& \[
\begin{aligned}
\& \hline 1.135 \\
\& 1.322
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 1.122 \\
\& 1.282
\end{aligned}
\] \& \[
\begin{array}{r}
\hline 1.055 \\
1.276 \\
\quad 1 \\
\hline \hline
\end{array}
\] \& 1.082
848 \\
\hline Bulgaria \& \[
\begin{aligned}
\& \hline \hline \text { Number of } \\
\& \text { Samples } \\
\& \text { - positive lots }
\end{aligned}
\] \& - seed
- ware
- seed
- ware \& \& \& \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& \hline \hline 443 \\
\& 552
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \hline 412 \\
\& 618
\end{aligned}
\] \& 275
474 \& 213
533 \& 295
443 \& 301
484 \& 195
612 \& 179
518 \& \[
\begin{array}{r}
169 \\
454 \\
2 \\
\hline
\end{array}
\] \& 133
381 \& 125
447 \\
\hline Croatia \& Number of Samples \& \[
\begin{gathered}
\hline \text {-seed } \\
- \text { ware } \\
\hline
\end{gathered}
\] \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \[
\begin{array}{r}
32 \\
132 \\
\hline
\end{array}
\] \& 35
135 \& 51
159 \& 20
100 \& \(\begin{array}{r}22 \\ 107 \\ \hline\end{array}\) \\
\hline Cyprus \& Number of Samples \& \[
\begin{gathered}
\hline \text {-seed } \\
\text { - ware }
\end{gathered}
\] \& \& \& \& \& \& \& \& \& \[
\begin{array}{r}
\hline 145 \\
167 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 108 \\
\& 178 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 115 \\
\& 350 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{array}{r}
115 \\
346 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
89 \\
270 \\
\hline \hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline 169 \\
\& 326 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 102 \\
\& 266 \\
\& \hline
\end{aligned}
\] \& 94
223 \& 124
224 \& 124
170 \& 67
140 \& 127
116 \& 66
224 \& 104
119 \\
\hline Czech Republic \& \[
\begin{aligned}
\& \hline \text { Number of } \\
\& \text { Samples } \\
\& \text { - positive lots }
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& \[
\begin{array}{r}
\hline 3.740 \\
150
\end{array}
\] \& \[
\begin{aligned}
\& \hline 355 \\
\& 131
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 246 \\
\& \hline 116
\end{aligned}
\] \& 246
163 \& 306
153 \& \begin{tabular}{|l|}
379 \\
173
\end{tabular} \& 385
101 \& 300
338 \& 451
386 \& \[
\begin{aligned}
\& \hline 475 \\
\& 784
\end{aligned}
\] \& 2.671
929 \& 391
523 \& \[
\begin{array}{r}
264 \\
520 \\
7 \\
\hline
\end{array}
\] \& 469
439 \\
\hline Denmark \& Number of Samples \& \[
\begin{gathered}
\\
\hline \text { seed } \\
\text { - ware } \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
\hline 346 \\
68 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 440 \\
190 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline 460 \\
\& 144
\end{aligned}
\] \& \[
\begin{array}{r}
282 \\
42 \\
\hline
\end{array}
\] \& 237
30 \& \[
\begin{aligned}
\& \hline 528 \\
\& 150
\end{aligned}
\] \& \[
\begin{array}{r}
240 \\
167 \\
\hline
\end{array}
\] \& 248
316 \& 291
283 \& 996
393 \& 740
390 \& 662
361 \& 430
348 \& 780
262 \& 697
195 \& 536
148 \& 541
192 \& 650
200 \& 552
242 \& 579
200 \& 615
448 \& 581
358 \\
\hline Estonia \& Number of Samples \& \[
\begin{gathered}
\hline \hline \text { - seed } \\
\text { - ware } \\
\hline
\end{gathered}
\] \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& 102 \\
\& 312
\end{aligned}
\] \& \[
\begin{aligned}
\& 161 \\
\& 242 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 263 \\
\& 369 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 324 \\
\& 358 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 278 \\
\& 269 \\
\& \hline
\end{aligned}
\] \& 228
263 \& 357
252 \& 331
170 \& 413
222 \& 287
169 \& 315
171 \& 339
173 \& 249
189 \& 288
145 \\
\hline Finland \& Number of Samples \& \[
\begin{gathered}
\hline \text { - seed } \\
\text { - ware }
\end{gathered}
\] \& \& \[
\begin{array}{r}
\hline 50 \\
102 \\
\hline
\end{array}
\] \& 60
140 \& 91
86 \& 101
0 \& \[
\begin{array}{r}
\hline 38 \\
0 \\
\hline
\end{array}
\] \& 80
0 \& 100
100 \& 150
68 \& 150
80 \& 150
122 \& 150
60 \& \(\begin{array}{r}150 \\ 55 \\ \hline\end{array}\) \& 150
25 \& 146
166 \& 205
846 \& 305
970 \& 358
569 \& 325
541 \& 401
437 \& 465
418 \& 470
433 \\
\hline France \& \[
\begin{aligned}
\& \text { Number of } \\
\& \text { Samples } \\
\& \text { - positive lots }
\end{aligned}
\] \& \& \[
\begin{array}{r}
7.342 \\
\hline 45
\end{array}
\] \& \[
\begin{array}{r}
5.187 \\
215
\end{array}
\] \& \[
\begin{array}{r}
16.384 \\
323
\end{array}
\] \& \[
\begin{array}{r}
5.759 \\
308
\end{array}
\] \& \[
\begin{array}{r}
8.809 \\
456
\end{array}
\] \& \[
\begin{array}{r}
\hline 7.821 \\
1.701 \\
\mathbf{1} \\
\mathbf{4 1} \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
7.613 \\
1.078 \\
2
\end{array}
\] \& \[
\begin{aligned}
\& \hline 6.762 \\
\& 1.216
\end{aligned}
\] \& \[
\begin{array}{r}
5.445 \\
744
\end{array}
\] \& 8.979
1.020 \& \[
\begin{array}{r}
122 \\
\hline 8.246 \\
988 \\
1
\end{array}
\] \& \[
\begin{array}{r}
8.333 \\
960 \\
\quad 1 \\
\hline \hline
\end{array}
\] \& 8.386
955 \& \[
\begin{array}{r}
20.459 \\
949 \\
1 \\
1
\end{array}
\] \& \[
\begin{array}{r}
9.193 \\
993 \\
1 \\
1 \\
\hline \hline
\end{array}
\] \& 12.179
883 \& \[
\begin{array}{r}
9.082 \\
901 \\
1 \\
\hline
\end{array}
\] \& 9.315
943 \& \[
\begin{array}{r}
9.041 \\
895 \\
\\
\hline
\end{array}
\] \& \[
\begin{array}{r}
9.325 \\
624 \\
0 \\
1 \\
\hline
\end{array}
\] \& 12.789
865 \& 10.189
943 \\
\hline Germany \& Number of Samples - positive lots \& \& \[
\begin{array}{r}
\hline 2.190 \\
\hline 198
\end{array}
\] \& \[
\begin{array}{r}
\hline 4.661 \\
670 \\
\mathbf{3} \\
\mathbf{3} \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 10.758 \\
2.417 \\
2 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 11.164 \\
3.732 \\
\\
\hline 15 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 11.871 \\
4.688 \\
\\
\hline 11 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
11.816 \\
5.152
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 11.124 \\
4.629 \\
5 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 10.837 \\
4.555
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 10.772 \\
5.617 \\
\mathbf{1} \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r|}
\hline \hline 12.559 \\
5.164 \\
1
\end{array}
\] \& \[
\begin{array}{r|}
\hline \hline 11.746 \\
3.652 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 10.860 \\
3.126
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 11.044 \\
2.825 \\
\\
\hline 1 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 10.562 \\
2.667 \\
\\
\hline \mathbf{3} \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 11.183 \\
2.427 \\
1
\end{array}
\] \& \[
\begin{array}{r}
11.052 \\
2.421
\end{array}
\] \& \[
\begin{array}{r}
\hline 10.943 \\
2.058 \\
1
\end{array}
\] \& \[
\begin{array}{r}
\hline 10.630 \\
2.258
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 10.246 \\
2.039 \\
\mathbf{3}
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 10.824 \\
2.690 \\
2 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
10.852 \\
2.675
\end{array}
\] \& 10.406
2.538 \\
\hline Greece \& Number of Samples - positive lots \& \[
\begin{gathered}
\hline \text { - seed } \\
\text { - ware } \\
\text { - seed } \\
\text { - ware } \\
\hline
\end{gathered}
\] \& 114 \& 152
31 \& \[
\begin{array}{r}
138 \\
515 \\
\mathbf{1}
\end{array}
\] \& 132
922 \& 73
466 \& 77
742 \& \[
\begin{array}{r}
60 \\
688 \\
\\
19 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 69 \\
796 \\
10 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
83 \\
681 \\
4 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline \hline 59 \\
733 \\
\mathbf{5} \\
\hline
\end{array}
\] \& 60
352 \& \[
\begin{array}{r}
\hline 77 \\
363 \\
\mathbf{3} \\
\mathbf{3} \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 119 \\
332 \\
\mathbf{1}
\end{array}
\] \& 120
351 \& \[
\begin{array}{r}
\hline \hline 130 \\
545 \\
\mathbf{3} \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
121 \\
429 \\
\mathbf{1} \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 86 \\
475 \\
\mathbf{1} \\
\hline
\end{array}
\] \& 77
416 \& \[
\begin{array}{r}
77 \\
\hline 520 \\
\\
\hline 10 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 84 \\
622 \\
2 \\
\hline
\end{array}
\] \& 41
497 \& 40
421 \\
\hline Hungary \& Number of Samples - positive lots \& \[
\begin{array}{c|}
\hline \text { - seed } \\
\text { - ware } \\
\text { - seed } \\
\text { - ware } \\
\hline \hline
\end{array}
\] \& \& \& \& \& \& \& \& \& \[
\begin{array}{r}
616 \\
688 \\
10 \\
14 \\
\hline 1
\end{array}
\] \& 566
362 \& \[
\begin{array}{r}
244 \\
357 \\
\\
\mathbf{2 4} \\
\hline 1 \text { 145 }
\end{array}
\] \& 215
317
2 \& \[
\begin{array}{r}
214 \\
345 \\
\mathbf{3} \\
\mathbf{1 3} \\
\hline 7
\end{array}
\] \& \[
\begin{array}{r}
205 \\
344 \\
9 \\
3 \\
\hline 70
\end{array}
\] \& \(\begin{array}{r}153 \\ 300 \\ 5 \\ \hline\end{array}\) \& \[
\begin{array}{r}
197 \\
198 \\
1 \\
5 \\
\hline \hline
\end{array}
\] \& \(\begin{array}{r}149 \\ 200 \\ 5 \\ \hline\end{array}\) \& 167
162 \& \[
\begin{array}{r}
191 \\
173 \\
1 \\
\mathbf{1} \\
\hline 01
\end{array}
\] \& \(\begin{array}{r}183 \\ 232 \\ 3 \\ \hline\end{array}\) \& 182
215
3 \& 225
215
5 \\
\hline Ireland \& \[
\begin{aligned}
\& \hline \hline \text { Number of } \\
\& \text { Samples } \\
\& \text { - positive lots }
\end{aligned}
\] \& \& 350 \& \[
\begin{aligned}
\& \hline \hline 234 \\
\& 242
\end{aligned}
\] \& 250
252 \& 236
215 \& 215
260 \& 308
309 \& 125
378 \& 120
381 \& 146
372 \& 110
229 \& 145
341 \& 188
339 \& \[
\begin{array}{r}
712 \\
528 \\
1 \\
1 \\
\hline 2
\end{array}
\] \& 736
518 \& 786
169 \& 480
295 \& 432
340 \& 359
277 \& 244
344 \& 197
344 \& 172
306 \& 175
310 \\
\hline Italy \& Number of Samples - positive lots \& \& \& \& \[
\begin{array}{r}
327 \\
2
\end{array}
\] \& 189 \& 77
54 \& \[
\begin{array}{r}
\hline 68 \\
\hline 148
\end{array}
\] \& \[
\begin{array}{r}
\hline 176 \\
274 \\
\mathbf{1} \\
\mathbf{1} \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline 262 \\
\& 307
\end{aligned}
\] \& 170
338 \& \[
\begin{array}{r}
291 \\
311 \\
\\
\mathbf{1} \\
\hline
\end{array}
\] \& \& \[
\begin{aligned}
\& \hline \hline 361 \\
\& 229
\end{aligned}
\] \& 154
384 \& 39
243 \& 54
326 \& 10
299 \& \[
\begin{array}{r}
27 \\
203 \\
\quad 1 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 29 \\
283
\end{array}
\] \& \[
\begin{array}{r}
\hline 40 \\
296
\end{array}
\] \& \[
\begin{array}{r}
25 \\
268
\end{array}
\] \& 27
232 \& 30
225 \\
\hline Latvia \& Number of Samples \& \[
\begin{gathered}
\hline \text { seed } \\
\text { - ware } \\
\hline
\end{gathered}
\] \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& \hline 183 \\
\& 140 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 752 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 139 \\
\& 508 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{array}{r}
\hline 207 \\
596 \\
\hline \hline
\end{array}
\] \& \[
\begin{array}{r}
163 \\
1.410 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline 178 \\
\& 979 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 163 \\
\& 759 \\
\& \hline \hline
\end{aligned}
\] \& 145
711 \& \(\begin{array}{r}142 \\ 804 \\ \hline\end{array}\) \& 143
772 \& 140
713 \& 171
636 \& 164
592 \& 318
567 \\
\hline Lithuania \& Number of Samples \& \[
\begin{array}{c|}
\hline \text { - seed } \\
\text { - ware }
\end{array}
\] \& \& \& \& \& \& \& \& \& \[
\begin{array}{l|}
\hline 209 \\
613
\end{array}
\] \& \[
\begin{array}{|l|l|}
\hline \hline 0404 \\
304 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline 124 \\
\& 989 \\
\& \hline \hline
\end{aligned}
\] \& \[
\begin{array}{r}
153 \\
\hline 1.705 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
187 \\
1.439 \\
\hline
\end{array}
\] \& 196
1.210 \& 180
623 \& 152
850 \& 155
883 \& 169
951 \& 128
773 \& \begin{tabular}{l}
157 \\
847 \\
\hline
\end{tabular} \& 121
774 \& 153
1.145 \\
\hline Luxembourg \& Number of
Samples \& \[
\begin{gathered}
\text { seed } \\
\text { - ware }
\end{gathered}
\] \& 111 \& 253
5 \& 254
4 \& 133 \& 208
0 \& 62
0 \& 399
0 \& \[
\begin{aligned}
\& \hline 439 \\
\& 300
\end{aligned}
\] \& 227
4 \& 225
8 \& 178
6 \& \& 79
12 \& 190 \& 303
1 \& 244 \& 150 \& 113 \& 178 \& 222 \& 122
5 \& 189
3 \\
\hline Malta \& \[
\begin{gathered}
\text { Number of } \\
\text { Samples } \\
\hline \hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline \text { seed } \\
\text { - ware }
\end{gathered}
\] \& \& \& \& \& \& \& \& \& 0 \& 0 \& 66 \& 0 \& 0
154 \& 0
34 \& 0
43 \& 0
41 \& - \({ }_{34}\) \& 0
39 \& 0
39 \& 0
32 \& [\({ }_{3}\) \& 0
31 \\
\hline Netherlands \& Number of Samples - positive lots \& \[
\begin{aligned}
\& \hline \text { - seed } \\
\& \text { - ware } \\
\& - \text { seed } \\
\& - \text { ware } \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
\hline 45.406 \\
10.543 \\
52 \\
40 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 58.920 \\
5.273 \\
\mathbf{8} \\
7 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 67.151 \\
4.126 \\
30 \\
32 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 55.008 \\
9.457 \\
2 \\
138 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 64.403 \\
5.273 \\
26 \\
73 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 64.430 \\
8.024 \\
13 \\
15 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 59.352 \\
6.088 \\
\mathbf{1 1} \\
\mathbf{1 1} \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 57.245 \\
6.603 \\
6 \\
11 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 58.484 \\
7.250 \\
3 \\
4 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline 61.199 \\
8.796 \\
\mathbf{1}
\end{array}
\] \& 42.819
3.055
1 \& \[
\begin{array}{r}
\hline 28.843 \\
2.263 \\
4 \\
\hline
\end{array}
\] \& 21.813
3.211
2 \& 22.069
2.900
1 \& \[
\begin{array}{r}
\hline 22.890 \\
2.680 \\
\mathbf{1}
\end{array}
\] \& \[
\begin{array}{r}
\hline 20.809 \\
1.520
\end{array}
\] \& \[
\begin{array}{r}
\hline 22.477 \\
1.687 \\
\mathbf{4} \\
\hline
\end{array}
\] \& 19.230
2.392 \& 17.642
3.002 \& 18.643
2.261 \& 19.640
2.258 \& 23.292
1.994
8 \\
\hline Poland \& \[
\begin{gathered}
\hline \text { Number of } \\
\text { Samples } \\
\text { - positive lots }
\end{gathered}
\] \& \begin{tabular}{l}
- seed \\
- ware \\
- seed \\
- ware \\
\hline
\end{tabular} \& \& \& \& \& \& \& \& \& \[
\begin{array}{r}
7.489 \\
11.520
\end{array}
\] \& \[
\begin{array}{r|}
\hline 8.188 \\
15.152
\end{array}
\] \& \[
\begin{array}{r}
\hline 5.920 \\
14.922
\end{array}
\] \& \[
\begin{array}{r}
6.192 \\
13.548
\end{array}
\] \& \[
\begin{array}{r}
7.550 \\
12.538
\end{array}
\] \& \[
\begin{array}{r}
6.517 \\
10.385
\end{array}
\] \& \[
\begin{aligned}
\& \hline 7.231 \\
\& 9.542
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 6.908 \\
\& 8.543
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 8.201 \\
\& 8.601
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 8.143 \\
\& 9.081
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 7.243 \\
\& 7.549
\end{aligned}
\] \& \(\begin{array}{r}7.983 \\ 9.961 \\ 3 \\ \hline\end{array}\) \& 8.225
16.085

2 \& 9.644
20.814

2

\hline Portugal \& Number of Samples - positive lots \& $$
\begin{aligned}
& \hline \text { - seed } \\
& \text { - ware } \\
& \text { - seed } \\
& \text { - ware } \\
& \hline \hline
\end{aligned}
$$ \& \& \[

$$
\begin{array}{r}
\hline 10 \\
686 \\
43 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
34 \\
286 \\
1 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 32 \\
413 \\
84 \\
\hline 8 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 170 \\
257 \\
49 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
13 \\
142 \\
20 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
65 \\
233 \\
7 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 39 \\
162 \\
\mathbf{5} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
38 \\
135 \\
\mathbf{6} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 45 \\
94 \\
4 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 37 \\
100 \\
2 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
8 \\
133 \\
10 \\
\hline 170
\end{array}
$$
\] \& 10

102
7 \& 6
132

1 \& [${ }^{2}$ \& \[
$$
\begin{array}{r}
\hline 0 \\
141 \\
8 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline \hline 0 \\
113 \\
19 \\
\hline \hline
\end{array}
$$
\] \& 88 \& 0

95 \& $$
\begin{array}{r}
15 \\
121 \\
2 \\
\hline
\end{array}
$$ \& 17

196
3 \& 13
142

\hline Romania \& $$
\begin{aligned}
& \hline \hline \text { Number of } \\
& \text { Samples } \\
& \text { - positive lots }
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \[

$$
\begin{aligned}
& 10 \\
& \hline 470 \\
& 790
\end{aligned}
$$
\] \& 586

1.020 \& 526
1.621 \& 507
1.358 \& 930
1.432
2 \& 688
1.569
2
2

2 \& $$
\begin{array}{r}
\hline 456 \\
1.415 \\
1 \\
2 \\
\hline
\end{array}
$$ \& 633

1.726 \& 1.080
1.602 \& 1.244
1.228 \& 1.396
1.248

\hline Slovakia \& $$
\begin{aligned}
& \hline \text { Number of } \\
& \text { Samples } \\
& \text { - positive lots }
\end{aligned}
$$ \& - seed

- ware
- seed
- ware \& \& \& \& \& \& \& \& \& $$
\begin{array}{r}
350 \\
285 \\
\mathbf{9} \\
\hline
\end{array}
$$ \& \[

$$
\begin{array}{r}
884 \\
277 \\
4 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
545 \\
696 \\
8 \\
\hline
\end{array}
$$
\] \& 266

201
4 \& 417
333
9 \& 369
333

4 \& $$
\begin{array}{r}
\hline 251 \\
266 \\
\mathbf{5} \\
\hline \hline
\end{array}
$$ \& \[

$$
\begin{array}{r}
245 \\
231 \\
\mathbf{3} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 228 \\
& 201
\end{aligned}
$$
\] \& 217

262 \& 297
306 \& 229
306 \& 238
264 \& 173
176

\hline Slovenia \& $$
\begin{aligned}
& \hline \hline \text { Number of } \\
& \text { Samples } \\
& \text { - positive lots }
\end{aligned}
$$ \& - seed

- ware
- seed
- ware \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& \hline 56 \\
& 82
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 60 \\
& 92
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 41 \\
& 95
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
37 \\
102
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline 35 \\
& 81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 36 \\
& 69
\end{aligned}
$$
\] \& 36

63 \& 31

72 \& $$
\begin{aligned}
& \hline 36 \\
& 61 \\
& 2 \\
& \hline
\end{aligned}
$$ \& 36

91 \& 28
91 \& 28
69 \& 24
61 \& 20
60

\hline Spain \& $$
\begin{aligned}
& \hline \text { Number of } \\
& \text { Samples } \\
& \text { - positive lots }
\end{aligned}
$$ \& - seed

- ware
- seed
- ware \& $$
\begin{array}{r}
1.009 \\
25 \\
1 \\
2 \\
\hline
\end{array}
$$ \& \[

$$
\begin{array}{r}
\hline 979 \\
132 \\
\mathbf{4} \\
\mathbf{4} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline 773 \\
& 171
\end{aligned}
$$
\] \& 647

152 \& 609
386

11 \& $$
\begin{array}{r}
457 \\
178 \\
\mathbf{3} \\
\hline \hline
\end{array}
$$ \& $\begin{array}{r}423 \\ 243 \\ 4 \\ \hline\end{array}$ \& \[

$$
\begin{array}{r}
723 \\
353 \\
\\
\mathbf{1 3} \\
\hline \hline
\end{array}
$$
\] \& 632

389

7 \& $\begin{array}{r}1.374 \\ 326 \\ 1 \\ 4 \\ \hline\end{array}$ \& $\begin{array}{r}1.179 \\ 637 \\ 6 \\ \hline\end{array}$ \& \[
$$
\begin{array}{r}
1.102 \\
660 \\
1 \\
11 \\
\hline \hline
\end{array}
$$

\] \& $\begin{array}{r}1.909 \\ 768 \\ 8 \\ \hline\end{array}$ \& $\begin{array}{r}1.765 \\ 890 \\ 6 \\ \hline\end{array}$ \& \[

$$
\begin{array}{r}
1.765 \\
794 \\
\\
18 \\
\hline \hline
\end{array}
$$

\] \& $\begin{array}{r}1.896 \\ 723 \\ 8 \\ \hline\end{array}$ \& \[

$$
\begin{array}{r}
1.760 \\
703 \\
2 \\
9 \\
\hline
\end{array}
$$
\] \& $\begin{array}{r}1.138 \\ 503 \\ 7 \\ \hline\end{array}$ \& $\begin{array}{r}1.064 \\ 641 \\ 2 \\ \hline\end{array}$ \& 1.002

416
3 \& $\begin{array}{r}935 \\ 440 \\ 8 \\ \hline\end{array}$ \& $\begin{array}{r}807 \\ 496 \\ \\ 2 \\ \hline\end{array}$

\hline Sweden \& Number of
Samples \& - seed

- ware
- seed
- ware \& 81 \& $$
\begin{array}{r}
\hline 395 \\
14
\end{array}
$$ \& 38

8 \& 81

11 \& 70 \& $$
\begin{aligned}
& \hline 249 \\
& 190
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \hline 00 \\
& 525
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 308 \\
& 243
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 195 \\
& 192
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 168 \\
& 192
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 175 \\
& 212
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 260 \\
& 245
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
\hline 218 \\
\hline 45
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1226 \\
\hline 51
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 228 \\
163 \\
2 \\
\hline \hline
\end{array}
$$
\] \& 312

168 \& 350
159 \& 14
113 \& 41
360 \& 263
202 \& 395
147 \& 300
208

\hline United Kingdom \& \[
$$
\begin{aligned}
& \hline \hline \text { Number of } \\
& \text { Samples } \\
& \text { - positive lots }
\end{aligned}
$$

\] \& \&	227
1	\& \[

$$
\begin{aligned}
& \hline \hline 191 \\
& 236
\end{aligned}
$$
\] \& 448

306 \& 171
171 \& 398
234

4 \& $$
\begin{array}{r}
\hline 1.653 \\
232
\end{array}
$$ \& \[

$$
\begin{array}{r}
\hline 1.282 \\
305
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 1.246 \\
266
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline 928 \\
& 339
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
1.883 \\
505
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 1.832 \\
491 \\
2 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 1.983 \\
541
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 1.982 \\
\hline 567
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 1.957 \\
610
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 1.873 \\
\hline 606 \\
3
\end{array}
$$
\] \& 1.841

594 \& $$
\begin{array}{r}
\hline 1.882 \\
\hline 569
\end{array}
$$ \& 1.687

352 \& 1.720
363 \& 1.704
360 \& 1.828
253 \& 1.861
260

\hline EU TOTAL \& \[
$$
\begin{gathered}
\hline \text { Number of } \\
\text { Samples } \\
\text { - positive lots }
\end{gathered}
$$

\] \& | - seed |
| :--- |
| - ware |
| - seed |
| - ware | \& \[

$$
\begin{array}{r}
57.790 \\
11.732 \\
\mathbf{5 3} \\
\mathbf{4 2} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
72.434 \\
8.072 \\
15 \\
57 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
97.210 \\
9.207 \\
\mathbf{3 1} \\
\mathbf{3 7} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
74.542 \\
15.647 \\
2 \\
\mathbf{2 3 7} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 88.053 \\
12.683 \\
27 \\
152 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 88.900 \\
17.457 \\
14 \\
79 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
82.593 \\
15.113 \\
\mathbf{1 4} \\
\mathbf{4 7} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 80.030 \\
16.339 \\
6 \\
52 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
94.844 \\
31.501 \\
\mathbf{1 3} \\
45 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
104.529 \\
36.965 \\
3 \\
18 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
78.915 \\
30.334 \\
\mathbf{2} \\
\mathbf{4 3} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 64.624 \\
27.825 \\
4 \\
35 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
58.861 \\
29.037 \\
7 \\
40 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 57.595 \\
25.581 \\
11 \\
19 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 60.599 \\
23.461 \\
6 \\
\mathbf{3 5} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 60.988 \\
23.229 \\
\mathbf{3} \\
\mathbf{2 8} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
60.555 \\
23.412 \\
5 \\
\mathbf{4 4} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
56.227 \\
24.390 \\
\mathbf{1} \\
\mathbf{1 1} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
55.448 \\
23.996 \\
\mathbf{4} \\
\mathbf{1 4} \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
56.483 \\
25.005 \\
0 \\
19 \\
\hline \hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline 61.016 \\
30.753 \\
0 \\
\mathbf{2 4} \\
\hline \hline
\end{array}
$$
\] \& $\begin{array}{r}63.574 \\ 34.767 \\ 13 \\ 12 \\ \hline\end{array}$

\hline
\end{tabular}

infected farms or of positive samples. Therefore, the figures for positive findings must be used with caution.

Getting in touch with the EU

IN PERSON

All over the European Union there are hundreds of Europe Direct Information Centres.
You can find the address of the centre nearest you at: http://europa.eu/contact

ON THE PHONE OR BY E-MAIL

Europe Direct is a service that answers your questions about the European Union. You can contact this service

- by freephone: 0080067891011 (certain operators may charge for these calls),
- at the following standard number: +32 22999696 or
- by electronic mail via: http://europa.eu/contact

Finding information about the EU

ONLINE

Information about the European Union in all the official languages of the EU is available on the Europa website at: http://europa.eu

EU PUBLICATIONS

You can download or order free and priced EU publications from EU Bookshop at: http://bookshop.europa.eu. Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see http://europa.eu/contact)

EU LAW AND RELATED DOCUMENTS

For access to legal information from the EU, including all EU law since 1951 in all the official language versions, go to EUR-Lex at: http://eur-lex.europa.eu

OPEN DATA FROM THE EU

The EU Open Data Portal (http://data.europa.eu/euodp/en/data) provides access to datasets from the EU. Data can be downloaded and reused for free, both for commercial and non-commercial purposes.

